Constraint boundary pursuing-based surrogate-assisted differential evolution for expensive optimization problems with mixed constraints

被引:15
|
作者
Yang, Zan [1 ]
Qiu, Haobo [2 ,3 ]
Gao, Liang [2 ,3 ]
Chen, Liming [2 ]
Cai, Xiwen [2 ]
机构
[1] Nanchang Univ, Sch Adv Mfg, Nanchang 330031, Peoples R China
[2] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
[3] Natl Ctr Technol Innovat Intelligent Design & Nume, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Expensive constrained optimization; Kriging; Mixed constraints; Differential evolution; GLOBAL OPTIMIZATION; PERIODIC STRUCTURES; DESIGN; STRATEGY; RANKING; MODELS;
D O I
10.1007/s00158-022-03473-w
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Surrogate-assisted evolutionary algorithms have recently shown exceptional abilities for handling with computationally Expensive Constrained Optimization Problems (ECOPs) where the constraints can be structural performance constraints such as volume, stiffness, and stress or computational fluid simulations in real-world complex engineering problems. But most of them are limited to solving ECOPs with inequality constraints. Therefore, a constraint boundary Pursuing-based Surrogate-Assisted Differential Evolution (PSADE) is designed to solve ECOPs with mixed constraints including inequality and equality. Specifically, potential areas near feasible region are explored by Trial Vector Generation Mechanism (TVGM) according to interactive guidance between elite solutions and current population, and an Expected Improvement-based Local Search (EILS) is employed to improve the accuracies of the Kriging models in promising neighboring areas of constraint boundary. Then a specific Solution Identification-based Local Search (SILS) is put forward for guiding two kinds of elite solutions, in which an expected feasibility-based local search method is designed for moving the elite infeasible solutions that violate the equality constraints toward the feasible region. Therefore, PSADE is able to maintain a good balance between convergence and diversity when considering both constraints and objective. Experimental studies on classical test problems show that PSADE is highly competitive on solving ECOPs with mixed constraints under an acceptable computational cost.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Surrogate-assisted global and distributed local collaborative optimization algorithm for expensive constrained optimization problems
    Liu, Xiangyong
    Yang, Zan
    Liu, Jiansheng
    Xiong, Junxing
    Huang, Jihui
    Huang, Shuiyuan
    Fu, Xuedong
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [42] A Surrogate-Assisted Evolutionary Algorithm for Seeking Multiple Solutions of Expensive Multimodal Optimization Problems
    Ji, Jing-Yu
    Tan, Zusheng
    Zeng, Sanyou
    See-To, Eric W. K.
    Wong, Man-Leung
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (01): : 377 - 388
  • [43] A multi-strategy surrogate-assisted competitive swarm optimizer for expensive optimization problems
    Pan, Jeng-Shyang
    Liang, Qingwei
    Chu, Shu-Chuan
    Tseng, Kuo-Kun
    Watada, Junzo
    APPLIED SOFT COMPUTING, 2023, 147
  • [44] A surrogate-assisted evolutionary algorithm with clustering-based sampling for high-dimensional expensive blackbox optimization
    Bai, Fusheng
    Zou, Dongchi
    Wei, Yutao
    JOURNAL OF GLOBAL OPTIMIZATION, 2024, 89 (01) : 93 - 115
  • [45] Complementary surrogate-assisted differential evolution algorithm for expensive multi-objective problems under a limited computational budget
    Cai, Xiwen
    Ruan, Gan
    Yuan, Bo
    Gao, Liang
    INFORMATION SCIENCES, 2023, 632 : 791 - 814
  • [46] A Classification-Based Surrogate-Assisted Evolutionary Algorithm for Expensive Many-Objective Optimization
    Pan, Linqiang
    He, Cheng
    Tian, Ye
    Wang, Handing
    Zhang, Xingyi
    Jin, Yaochu
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (01) : 74 - 88
  • [47] A surrogate-assisted particle swarm optimization algorithm based on efficient global optimization for expensive black-box problems
    Yang, Zan
    Qiu, Haobo
    Gao, Liang
    Cai, Xiwen
    Jiang, Chen
    Chen, Liming
    ENGINEERING OPTIMIZATION, 2019, 51 (04) : 549 - 566
  • [48] Grid Classification-Based Surrogate-Assisted Particle Swarm Optimization for Expensive Multiobjective Optimization
    Yang, Qi-Te
    Zhan, Zhi-Hui
    Liu, Xiao-Fang
    Li, Jian-Yu
    Zhang, Jun
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (06) : 1867 - 1881
  • [49] A multi-model assisted differential evolution algorithm for computationally expensive optimization problems
    Yu, Haibo
    Kang, Li
    Tan, Ying
    Zeng, Jianchao
    Sun, Chaoli
    COMPLEX & INTELLIGENT SYSTEMS, 2021, 7 (05) : 2347 - 2371
  • [50] Surrogate-assisted evolutionary algorithm for expensive constrained multi-objective discrete optimization problems
    Gu, Qinghua
    Wang, Qian
    Xiong, Neal N.
    Jiang, Song
    Chen, Lu
    COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (04) : 2699 - 2718