Constraint boundary pursuing-based surrogate-assisted differential evolution for expensive optimization problems with mixed constraints

被引:15
|
作者
Yang, Zan [1 ]
Qiu, Haobo [2 ,3 ]
Gao, Liang [2 ,3 ]
Chen, Liming [2 ]
Cai, Xiwen [2 ]
机构
[1] Nanchang Univ, Sch Adv Mfg, Nanchang 330031, Peoples R China
[2] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
[3] Natl Ctr Technol Innovat Intelligent Design & Nume, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Expensive constrained optimization; Kriging; Mixed constraints; Differential evolution; GLOBAL OPTIMIZATION; PERIODIC STRUCTURES; DESIGN; STRATEGY; RANKING; MODELS;
D O I
10.1007/s00158-022-03473-w
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Surrogate-assisted evolutionary algorithms have recently shown exceptional abilities for handling with computationally Expensive Constrained Optimization Problems (ECOPs) where the constraints can be structural performance constraints such as volume, stiffness, and stress or computational fluid simulations in real-world complex engineering problems. But most of them are limited to solving ECOPs with inequality constraints. Therefore, a constraint boundary Pursuing-based Surrogate-Assisted Differential Evolution (PSADE) is designed to solve ECOPs with mixed constraints including inequality and equality. Specifically, potential areas near feasible region are explored by Trial Vector Generation Mechanism (TVGM) according to interactive guidance between elite solutions and current population, and an Expected Improvement-based Local Search (EILS) is employed to improve the accuracies of the Kriging models in promising neighboring areas of constraint boundary. Then a specific Solution Identification-based Local Search (SILS) is put forward for guiding two kinds of elite solutions, in which an expected feasibility-based local search method is designed for moving the elite infeasible solutions that violate the equality constraints toward the feasible region. Therefore, PSADE is able to maintain a good balance between convergence and diversity when considering both constraints and objective. Experimental studies on classical test problems show that PSADE is highly competitive on solving ECOPs with mixed constraints under an acceptable computational cost.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] A surrogate-assisted differential evolution algorithm with a dual-space-driven selection strategy for expensive optimization problems
    Liu, Hanqing
    Ren, Zhigang
    He, Chenlong
    Du, Wenhao
    COMPLEX & INTELLIGENT SYSTEMS, 2025, 11 (05)
  • [22] A general framework of surrogate-assisted evolutionary algorithms for solving computationally expensive constrained optimization problems
    Yang, Zan
    Qiu, Haobo
    Gao, Liang
    Xu, Danyang
    Liu, Yuanhao
    INFORMATION SCIENCES, 2023, 619 : 491 - 508
  • [23] Surrogate-Assisted Differential Evolution with multiple sampling mechanisms for high-dimensional expensive problems
    Yu, Laiqi
    Meng, Zhenyu
    INFORMATION SCIENCES, 2025, 687
  • [24] A surrogate-assisted evolutionary algorithm with knowledge transfer for expensive multimodal optimization problems
    Du, Wenhao
    Ren, Zhigang
    Wang, Jihong
    Chen, An
    INFORMATION SCIENCES, 2024, 652
  • [25] Surrogate-Assisted Differential Evolution With Adaptive Multisubspace Search for Large-Scale Expensive Optimization
    Gu, Haoran
    Wang, Handing
    Jin, Yaochu
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (06) : 1765 - 1779
  • [26] A Multi-level Surrogate-assisted Algorithm for Expensive Optimization Problems
    Hu, Liang
    Wu, Xianwei
    Che, Xilong
    INFORMATION TECHNOLOGY AND CONTROL, 2024, 53 (01): : 280 - 301
  • [27] Surrogate-assisted teaching-learning-based optimization for high-dimensional and computationally expensive problems
    Dong, Huachao
    Wang, Peng
    Yu, Xinkai
    Song, Baowei
    APPLIED SOFT COMPUTING, 2021, 99
  • [28] A Kriging-assisted Double Population Differential Evolution for Mixed-Integer Expensive Constrained Optimization Problems with Mixed Constraints
    Liu, Yuanhao
    Yang, Zan
    Xu, Danyang
    Qiu, Haobo
    Gao, Liang
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 84
  • [29] Decision space partition based surrogate-assisted evolutionary algorithm for expensive optimization
    Liu, Yuanchao
    Liu, Jianchang
    Tan, Shubin
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 214
  • [30] Two-layer surrogate-assisted collaborative framework for expensive constrained optimization problems involving mixed integer variables
    Liu, Jiansheng
    Chen, Jin
    Yang, Zan
    Liu, Yuanhao
    Qiu, Haobo
    Gao, Liang
    INFORMATION SCIENCES, 2025, 690