Non-integrability of strings in AdS6 x S2 x S background and its 5D holographic duals

被引:0
作者
Alencar, G. [1 ,3 ]
Tahim, M. O. [2 ,3 ]
机构
[1] Univ Fed Ceara, Dept Fis, Caixa Postal 6030,Campus P, BR-60455760 Fortaleza, CE, Brazil
[2] Univ Estadual Ceara, Fac Educ Ciencias & Letras Sertao Cent, Campus Itaperi,Caixa Postal 703, BR-60714903 Fortaleza, CE, Brazil
[3] Univ Fed Rio Grande do Norte, Int Inst Phys, Campus Univ, BR-59078970 Natal, RN, Brazil
来源
EUROPEAN PHYSICAL JOURNAL C | 2023年 / 83卷 / 03期
关键词
1ST INTEGRALS; INTEGRABILITY; NONEXISTENCE; DYNAMICS;
D O I
10.1140/epjc/s10052-023-11225-3
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this manuscript we study Liouvillian non integrability of strings in AdS(6) x S-2 x sigma background. We consider soliton strings and look for simple solutions in order to reduce the equations to only one linear second order differential equation called Normal Variation Equation (NVE). We study truncations in eta and sigma variables showing their applicability or not to catch (non) integrability of models. With this technique we are able to study many recent cases considered in the literature: the abelian and non-abelian T-duals, the (p , q)-5-brane system, the T-N , +(MN) theories and the T-N,T-P and +(P ,N) quivers. We show that all of them are not integrable. Finally, we consider the general case at the boundary sigma =sigma(0) for large sigma(0) and show that we can get general conclusions about integrability. For example, beyond the above quivers, we show generically that long quivers are not integrable. In order to establish the results, we numerically study the string dynamical system seeking by chaotic behaviour. Such a characteristic gives one more piece of evidence for non-integrability of the background studied.
引用
收藏
页数:22
相关论文
共 57 条
  • [1] Aharony O, 1998, J HIGH ENERGY PHYS
  • [2] Akhond M, 2021, J HIGH ENERGY PHYS, DOI 10.1007/JHEP11(2021)205
  • [3] Alday LF., 2005, JHEP, V0507, DOI [10.1088/1126-6708/2005/07/002, DOI 10.1088/1126-6708/2005/07/002, 10.1088/1126-6708/2005/07/002[hep-th/0502240]
  • [4] Apruzzi F, 2014, J HIGH ENERGY PHYS, DOI [10.1007/JHEP05(2015)012, 10.1007/JHEP11(2014)099]
  • [5] Chaotic strings in a near Penrose limit of AdS5 x T1,1
    Asano, Yuhma
    Kawai, Daisuke
    Kyono, Hideki
    Yoshida, Kentaroh
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (08):
  • [6] Chaos in the BMN matrix model
    Asano, Yuhma
    Kawai, Daisuke
    Yoshida, Kentaroh
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (06):
  • [7] Chaotic dynamics of strings in charged black hole backgrounds
    Basu, Pallab
    Chaturvedi, Pankaj
    Samantray, Prasant
    [J]. PHYSICAL REVIEW D, 2017, 95 (06)
  • [8] Chaos around holographic Regge trajectories
    Basu, Pallab
    Das, Diptarka
    Ghosh, Archisman
    Zayas, Leopoldo A. Pando
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2012, (05):
  • [9] Analytic nonintegrability in string theory
    Basu, Pallab
    Zayas, Leopoldo A. Pando
    [J]. PHYSICAL REVIEW D, 2011, 84 (04):
  • [10] Integrability lost: Chaotic dynamics of classical strings on a confining holographic background
    Basu, Pallab
    Das, Diptarka
    Ghosh, Archisman
    [J]. PHYSICS LETTERS B, 2011, 699 (05) : 388 - 393