Machine learning and deep learning-A review for ecologists

被引:124
|
作者
Pichler, Maximilian [1 ]
Hartig, Florian [1 ]
机构
[1] Univ Regensburg, Theoret Ecol, Regensburg, Germany
来源
METHODS IN ECOLOGY AND EVOLUTION | 2023年 / 14卷 / 04期
关键词
artificial intelligence; big data; causal inference; deep learning; machine learning; SPECIES DISTRIBUTION MODELS; NEURAL-NETWORK; PATTERN-RECOGNITION; CAUSAL INFERENCE; BIASES; CONSERVATION; REGRESSION; IMAGES; CLASSIFICATION; INFORMATION;
D O I
10.1111/2041-210X.14061
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The popularity of machine learning (ML), deep learning (DL) and artificial intelligence (AI) has risen sharply in recent years. Despite this spike in popularity, the inner workings of ML and DL algorithms are often perceived as opaque, and their relationship to classical data analysis tools remains debated. Although it is often assumed that ML and DL excel primarily at making predictions, ML and DL can also be used for analytical tasks traditionally addressed with statistical models. Moreover, most recent discussions and reviews on ML focus mainly on DL, failing to synthesise the wealth of ML algorithms with different advantages and general principles. Here, we provide a comprehensive overview of the field of ML and DL, starting by summarizing its historical developments, existing algorithm families, differences to traditional statistical tools, and universal ML principles. We then discuss why and when ML and DL models excel at prediction tasks and where they could offer alternatives to traditional statistical methods for inference, highlighting current and emerging applications for ecological problems. Finally, we summarize emerging trends such as scientific and causal ML, explainable AI, and responsible AI that may significantly impact ecological data analysis in the future. We conclude that ML and DL are powerful new tools for predictive modelling and data analysis. The superior performance of ML and DL algorithms compared to statistical models can be explained by their higher flexibility and automatic data-dependent complexity optimization. However, their use for causal inference is still disputed as the focus of ML and DL methods on predictions creates challenges for the interpretation of these models. Nevertheless, we expect ML and DL to become an indispensable tool in ecology and evolution, comparable to other traditional statistical tools.
引用
收藏
页码:994 / 1016
页数:23
相关论文
共 50 条
  • [1] Machine Learning and Deep Learning in Cardiothoracic Imaging: A Scoping Review
    Khosravi, Bardia
    Rouzrokh, Pouria
    Faghani, Shahriar
    Moassefi, Mana
    Vahdati, Sanaz
    Mahmoudi, Elham
    Chalian, Hamid
    Erickson, Bradley J.
    DIAGNOSTICS, 2022, 12 (10)
  • [2] AI in Endoscopic Gastrointestinal Diagnosis: A Systematic Review of Deep Learning and Machine Learning Techniques
    Lewis, Jovita Relasha
    Pathan, Sameena
    Kumar, Preetham
    Dias, Cifha Crecil
    IEEE ACCESS, 2024, 12 : 163764 - 163786
  • [3] Auto-Encoders in Deep Learning-A Review with New Perspectives
    Chen, Shuangshuang
    Guo, Wei
    MATHEMATICS, 2023, 11 (08)
  • [4] Machine learning and deep learning: Introduction and applications
    Nakashima T.
    Zairyo, 2020, 9 (633-639): : 633 - 639
  • [5] Data Science in Economics: Comprehensive Review of Advanced Machine Learning and Deep Learning Methods
    Nosratabadi, Saeed
    Mosavi, Amirhosein
    Puhong Duan
    Ghamisi, Pedram
    Filip, Ferdinand
    Band, Shahab S.
    Reuter, Uwe
    Gama, Joao
    Gandomi, Amir H.
    MATHEMATICS, 2020, 8 (10) : 1 - 25
  • [6] Plant Disease Detection and Classification by Deep Learning-A Review
    Li, Lili
    Zhang, Shujuan
    Wang, Bin
    IEEE ACCESS, 2021, 9 : 56683 - 56698
  • [7] Medical deep learning-A systematic meta-review
    Egger, Jan
    Gsaxner, Christina
    Pepe, Antonio
    Pomykala, Kelsey L.
    Jonske, Frederic
    Kurz, Manuel
    Li, Jianning
    Kleesiek, Jens
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 221
  • [8] Brain Vessel Segmentation Using Deep Learning-A Review
    Goni, Mohammad Raihan
    Ruhaiyem, Nur Intan Raihana
    Mustapha, Muzaimi
    Achuthan, Anusha
    Nassir, Che Mohd Nasril Che Mohd
    IEEE ACCESS, 2022, 10 : 111322 - 111336
  • [9] Role of artificial intelligence, machine learning and deep learning models in corneal disorders - A narrative review
    Gurnani, B.
    Kaur, K.
    Lalgudi, V. G.
    Kundu, G.
    Mimouni, M.
    Liu, H.
    Jhanji, V.
    Prakash, G.
    Roy, A. S.
    Shetty, R.
    Gurav, J. S.
    JOURNAL FRANCAIS D OPHTALMOLOGIE, 2024, 47 (07):
  • [10] Intelligent assessment of power quality disturbances: A comprehensive review on machine learning and deep learning solutions
    Jain, Shaurya
    Satsangi, Amol
    Kumar, Rajat
    Panwar, Divyani
    Amir, Mohammad
    COMPUTERS & ELECTRICAL ENGINEERING, 2025, 123