Automatic segmentation of human knee anatomy by a convolutional neural network applying a 3D MRI protocol

被引:18
|
作者
Kulseng, Carl Petter Skaar [1 ]
Nainamalai, Varatharajan [2 ]
Grovik, Endre [3 ,4 ]
Geitung, Jonn-Terje [1 ,5 ,6 ]
Aroen, Asbjorn [7 ,8 ]
Gjesdal, Kjell-Inge [1 ,2 ,6 ]
机构
[1] Sunnmore MR Klin, Langelandsvegen 15, N-6010 Alesund, Norway
[2] Norwegian Univ Sci & Technol, Larsgaardvegen 2, N-6025 Alesund, Norway
[3] Norwegian Univ Sci & Technol, Hogskoleringen 5, N-7491 Trondheim, Norway
[4] More & Romsdal Hosp Trust, Postboks 1600, N-6025 Alesund, Norway
[5] Univ Oslo, Fac Med, Klaus Torgards Vei 3, N-0372 Oslo, Norway
[6] Akershus Univ Hosp, Dept Radiol, Postboks 1000, N-1478 Lorenskog, Norway
[7] Akershus Univ Hosp, Inst Clin Med, Dept Orthoped Surg, Problemveien 7, N-0315 Oslo, Norway
[8] Norwegian Sch Sport Sci, Oslo Sports Trauma Res Ctr, Postboks 4014, N-0806 Oslo, Norway
关键词
Magnetic Resonance Imaging; Musculoskeletal; Deep learning; Knee images segmentation; Visualization;
D O I
10.1186/s12891-023-06153-y
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
BackgroundTo study deep learning segmentation of knee anatomy with 13 anatomical classes by using a magnetic resonance (MR) protocol of four three-dimensional (3D) pulse sequences, and evaluate possible clinical usefulness.MethodsThe sample selection involved 40 healthy right knee volumes from adult participants. Further, a recently injured single left knee with previous known ACL reconstruction was included as a test subject. The MR protocol consisted of the following 3D pulse sequences: T1 TSE, PD TSE, PD FS TSE, and Angio GE. The DenseVNet neural network was considered for these experiments. Five input combinations of sequences (i) T1, (ii) T1 and FS, (iii) PD and FS, (iv) T1, PD, and FS and (v) T1, PD, FS and Angio were trained using the deep learning algorithm. The Dice similarity coefficient (DSC), Jaccard index and Hausdorff were used to compare the performance of the networks.ResultsCombining all sequences collectively performed significantly better than other alternatives. The following DSCs (+/- standard deviation) were obtained for the test dataset: Bone medulla 0.997 (+/- 0.002), PCL 0.973 (+/- 0.015), ACL 0.964 (+/- 0.022), muscle 0.998 (+/- 0.001), cartilage 0.966 (+/- 0.018), bone cortex 0.980 (+/- 0.010), arteries 0.943 (+/- 0.038), collateral ligaments 0.919 (+/- 0.069), tendons 0.982 (+/- 0.005), meniscus 0.955 (+/- 0.032), adipose tissue 0.998 (+/- 0.001), veins 0.980 (+/- 0.010) and nerves 0.921 (+/- 0.071). The deep learning network correctly identified the anterior cruciate ligament (ACL) tear of the left knee, thus indicating a future aid to orthopaedics.ConclusionsThe convolutional neural network proves highly capable of correctly labeling all anatomical structures of the knee joint when applied to 3D MR sequences. We have demonstrated that this deep learning model is capable of automatized segmentation that may give 3D models and discover pathology. Both useful for a preoperative evaluation.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Deep convolutional neural network for automatic fault recognition from 3D seismic datasets
    An, Yu
    Guo, Jiulin
    Ye, Qing
    Childs, Conrad
    Walsh, John
    Dong, Ruihai
    COMPUTERS & GEOSCIENCES, 2021, 153
  • [32] Volumetric Segmentation of Brain Regions From MRI Scans Using 3D Convolutional Neural Networks
    Ramzan, Farheen
    Khan, Muhammad Usman Ghani
    Iqbal, Sajid
    Saba, Tanzila
    Rehman, Amjad
    IEEE ACCESS, 2020, 8 : 103697 - 103709
  • [33] Automatic recognition of schizophrenia from facial videos using 3D convolutional neural network
    Huang, Jie
    Zhao, Yanli
    Qu, Wei
    Tian, Zhanxiao
    Tan, Yunlong
    Wang, Zhiren
    Tan, Shuping
    ASIAN JOURNAL OF PSYCHIATRY, 2022, 77
  • [34] Automatic segmentation of concrete aggregate using convolutional neural network
    Wang, Wenjun
    Su, Chao
    Zhang, Heng
    AUTOMATION IN CONSTRUCTION, 2022, 134
  • [35] Automatic Segmentation of MR Brain Images With a Convolutional Neural Network
    Moeskops, Pim
    Viergever, Max A.
    Mendrik, Adrienne M.
    de Vries, Linda S.
    Benders, Manon J. N. L.
    Isgum, Ivana
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) : 1252 - 1261
  • [36] Automatic segmentation of the pharyngeal airway space with convolutional neural network
    Shujaat, Sohaib
    Jazil, Omid
    Willems, Holger
    Van Gerven, Adriaan
    Shaheen, Eman
    Politis, Constantinus
    Jacobs, Reinhilde
    JOURNAL OF DENTISTRY, 2021, 111
  • [37] Automatic two-chamber segmentation in cardiac CTA using 3D fully convolutional neural networks
    Yang, Yan
    Masoud, Osama
    MEDICAL IMAGING 2019: IMAGE PROCESSING, 2019, 10949
  • [38] Automatic Segmentation of Meniscus in Multispectral MRI Using Regions with Convolutional Neural Network (R-CNN)
    Olmez, Emre
    Akdogan, Volkan
    Korkmaz, Murat
    Er, Orhan
    JOURNAL OF DIGITAL IMAGING, 2020, 33 (04) : 916 - 929
  • [39] Automatic Segmentation of Meniscus in Multispectral MRI Using Regions with Convolutional Neural Network (R-CNN)
    Emre ÖLMEZ
    Volkan AKDOĞAN
    Murat KORKMAZ
    Orhan ER
    Journal of Digital Imaging, 2020, 33 : 916 - 929
  • [40] Classification of Brain MRI with Big Data and deep 3D Convolutional Neural Networks
    Wegmayr, Viktor
    Aitharaju, Sai
    Buhmann, Joachim
    MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, 2018, 10575