Data-Driven Steering of Concentric Tube Robots in Unknown Environments via Dynamic Mode Decomposition

被引:12
作者
Thamo, Balint [1 ,2 ]
Hanley, David [1 ,2 ]
Dhaliwal, Kevin [2 ]
Khadem, Mohsen [1 ,2 ]
机构
[1] Univ Edinburgh, Sch Informat, Edinburgh EH8 9YL, Scotland
[2] Univ Edinburgh, Queens Med Res Inst, Ctr Inflammat Res, Translat Healthcare Technol Grp, Edinburgh EH8 9YL, Scotland
基金
英国医学研究理事会;
关键词
Robots; Robot kinematics; Dynamics; Electron tubes; Trajectory; Kinematics; Computational modeling; Model learning for control; learning from experience; surgical robotics; steerable catheters; needles; KOOPMAN OPERATOR; SYSTEMS;
D O I
10.1109/LRA.2022.3231490
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Concentric Tube Robots (CTRs) are a type of continuum robot capable of manipulating objects in restricted spaces and following smooth trajectories. CTRs are ideal instruments for minimally invasive surgeries. Accurate control of CTR's motion in presence of contact with tissue and external forces will allow safe deployment of the robot in a variety of minimally invasive surgeries. Here, we propose a data-driven controller that can repeatedly and precisely direct the robot along predetermined deployment trajectories. The proposed controller doesn't rely on a mathematical model of the robot and employs Extended Dynamic Mode Decomposition (EDMD) to learn the nonlinear dynamics of the robot and the interaction forces on the fly. This enables the robot to follow desired trajectories in the presence of unknown perturbations, such as external forces. Experiments are carried out to evaluate the accuracy of the controller in steering the robot on arbitrary trajectories. Results demonstrate that the robot can track trajectories with a mean accuracy of 2.4 mm in repeated trials. Furthermore, we simulate scenarios where the robot is in contact with a rigid obstacle and is cutting through phantom tissue. Results show the robot can reach various static targets with a minimum accuracy of 2 mm.
引用
收藏
页码:856 / 863
页数:8
相关论文
共 31 条
[1]  
Bern JM, 2020, 2020 3RD IEEE INTERNATIONAL CONFERENCE ON SOFT ROBOTICS (ROBOSOFT), P417, DOI [10.1109/robosoft48309.2020.9116011, 10.1109/RoboSoft48309.2020.9116011]
[2]  
Bruder D, 2019, IEEE INT CONF ROBOT, P6244, DOI [10.1109/icra.2019.8793766, 10.1109/ICRA.2019.8793766]
[3]   Learning to Play Table Tennis From Scratch Using Muscular Robots [J].
Buechler, Dieter ;
Guist, Simon ;
Calandra, Roberto ;
Berenz, Vincent ;
Schoelkopf, Bernhard ;
Peters, Jan .
IEEE TRANSACTIONS ON ROBOTICS, 2022, 38 (06) :3850-3860
[4]   A Telerobotic System for Transnasal Surgery [J].
Burgner, Jessica ;
Rucker, D. Caleb ;
Gilbert, Hunter B. ;
Swaney, Philip J. ;
Russell, Paul T., III ;
Weaver, Kyle D. ;
Webster, Robert J., III .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2014, 19 (03) :996-1006
[5]   Estimating Tip Contact Forces for Concentric Tube Continuum Robots Based on Backbone Deflection [J].
Donat, Heiko ;
Lilge, Sven ;
Burgner-Kahrs, Jessica ;
Steil, Jochen J. .
IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, 2020, 2 (04) :619-630
[6]   Design and Control of Concentric-Tube Robots [J].
Dupont, Pierre E. ;
Lock, Jesse ;
Itkowitz, Brandon ;
Butler, Evan .
IEEE TRANSACTIONS ON ROBOTICS, 2010, 26 (02) :209-225
[7]   Autonomous robotic intracardiac catheter navigation using haptic vision [J].
Fagogenis, G. ;
Mencattelli, M. ;
Machaidze, Z. ;
Rosa, B. ;
Price, K. ;
Wu, F. ;
Weixler, V ;
Saeed, M. ;
Mayer, J. E. ;
Dupont, P. E. .
SCIENCE ROBOTICS, 2019, 4 (29)
[8]  
Fang GX, 2022, IEEE-ASME T MECH, V27, P5296, DOI [10.1109/TMECH.2022.3178303, 10.1109/IECON49645.2022.9968639]
[9]   Investigating exploration for deep reinforcement learning of concentric tube robot control [J].
Iyengar, Keshav ;
Dwyer, George ;
Stoyanov, Danail .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2020, 15 (07) :1157-1165
[10]  
Kgel M., 2011, IFAC Proc. Vol, V44, P1362