Microstructure, hardness, oxidation, and corrosion behavior of TiNbTaVW refractory high entropy alloy in 3.5 wt% NaCl and 1 M H2SO4

被引:10
作者
Bamisaye, Olufemi Sylvester [1 ,3 ]
Maledi, Nthabiseng [1 ,2 ]
Van der Merwe, Josias [1 ,2 ]
Bodunrin, Michael Oluwatosin [1 ,2 ]
机构
[1] Univ Witwatersrand, Fac Engn & Built Environm, Sch Chem & Met Engn, Johannesburg, South Africa
[2] Univ Witwatersrand, DSI NRF Ctr Excellence Strong Mat, Johannesburg, South Africa
[3] Air Force Inst Technol, Fac Air Engn, Mech Engn Dept, Kaduna, Nigeria
关键词
Solid solution strengthening; Single-phase RHEA; Internal stress; Corrosion; Oxidation; MECHANICAL-PROPERTIES; CYCLIC OXIDATION; ELASTIC-MODULUS; SOLID-SOLUTION; PREDICTION; RESISTANCE; EVOLUTION; COATINGS; TUNGSTEN; SILICON;
D O I
10.1016/j.jallcom.2024.173803
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Refractory high entropy alloys (RHEAs), which comprise high-melting-point refractory elements, have been regarded as potential candidates that can substitute nickel-based superalloys used in high-temperature applications. This study investigated the microstructure, hardness, corrosion, and oxidation behavior of the TiNbTaVW RHEA compared with commercial-grade IN718 alloy. The equiatomic TiNbTaVW RHEA was produced using an arc melting furnace. The microstructure of the as-cast RHEA consisted of a body-centered cubic solid-solution phase with a dendritic structure corresponding to the empirical phase prediction. The RHEA exhibited a higher hardness of 522 +/- 10 HV than the IN718 alloy with 301 +/- 14 HV. The higher hardness is due to solid-solution strengthening and grain refinement. The RHEA had a lower corrosion rate in 3.5 wt% NaCl (0.0003 mm/yr) and 1 M H2SO4 (0.0009 mm/yr) than the commercial IN718 alloy (0.054 mm/yr and 1.12 mm/yr, respectively). At 850 degrees C after 15 h and 1050 degrees C after 15 h, the IN718 alloy exhibited a mass gain of 4.41 mg/cm(2) and 10.84 mg/cm(2), respectively, while the TiNbTaVW RHEA exhibited a mass loss of - 23.58 mg/cm(2) and - 45.92 mg/cm(2), respectively, indicating that the IN718 alloy exhibited the best oxidation resistance. Thermal and growth stresses contributed to the pores, voids, cracks, and oxide layer spallation observed in the TiNbTaVW RHEA.
引用
收藏
页数:18
相关论文
共 121 条
  • [1] Investigation of the High-Temperature Oxidation Behavior of the Al0.5CoCrFeNi High Entropy Alloy
    Abbaszadeh, Saeid
    Pakseresht, Amirhossein
    Omidvar, Hamid
    Shafiei, Ali
    [J]. SURFACES AND INTERFACES, 2020, 21
  • [2] Microstructure and Corrosion Performance of Aluminium Matrix Composites Reinforced with Refractory High-Entropy Alloy Particulates
    Ananiadis, Elias
    Argyris, Konstantinos T.
    Matikas, Theodore E.
    Sfikas, Athanasios K.
    Karantzalis, Alexandros E.
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (03): : 1 - 12
  • [3] [Anonymous], 1999, ASTM G102-89
  • [4] [Anonymous], 2009, ASTM E92-17
  • [5] Corrosion Behavior of Ti-6Al-4V with Different Thermomechanical Treatments and Microstructures
    Atapour, M.
    Pilchak, A.
    Frankel, G. S.
    Williams, J. C.
    Fathi, M. H.
    Shamanian, M.
    [J]. CORROSION, 2010, 66 (06)
  • [6] EFFECT OF 0.1 AT-PERCENT ZIRCONIUM ON THE CYCLIC OXIDATION RESISTANCE OF BETA-NIAL
    BARRETT, CA
    [J]. OXIDATION OF METALS, 1988, 30 (5-6): : 361 - 390
  • [7] Thermomechanical properties of amorphous metallic tungsten-oxygen and tungsten-oxide coatings
    Besozzi, E.
    Dellasega, D.
    Russo, V.
    Conti, C.
    Passoni, M.
    Beghi, M. G.
    [J]. MATERIALS & DESIGN, 2019, 165
  • [8] PREDICTION OF TRANSITION-METAL PHASE-DIAGRAMS
    BREWER, L
    [J]. JOURNAL OF NUCLEAR MATERIALS, 1974, 51 (01) : 2 - 11
  • [9] Native oxidation resistance of Al20Nb30Ta10Ti30Zr10 refractory complex concentrated alloy (RCCA)
    Butler, T. M.
    Chaput, K. J.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 787 : 606 - 617
  • [10] High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs)
    Butler, T. M.
    Chaput, K. J.
    Dietrich, J. R.
    Senkov, O. N.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 729 : 1004 - 1019