Modulating electrochemical properties by Fe3+doping for cobalt-free Li1.2Ni0.26Mn0.54O2 cathode material

被引:5
作者
Liang, Qiuming [1 ,3 ]
He, Aoping [1 ,2 ,3 ]
He, Huan [1 ,2 ,3 ]
Liang, Tianquan [1 ,2 ,3 ]
机构
[1] Guangxi Univ, State Key Lab Featured Met Mat & Life Cycle Safety, Nanning 530004, Peoples R China
[2] Guangxi Univ, MOE Key Lab New Proc Technol Nonferrous Met & Mat, Nanning 530004, Peoples R China
[3] Guangxi Univ, Sch Resources Environm & Mat, Nanning 530004, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-rich layered oxides; Fe3+doping; Structural stability; Li plus diffusion coefficient; Electrochemical performance; STRUCTURAL STABILITY; RICH CATHODE; PERFORMANCE; OXIDE; CO; LINI1/3CO1/3MN1/3O2; BATTERIES; IMPROVE; CATION; NI;
D O I
10.1016/j.jallcom.2023.173057
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The widespread application of Li-rich cathode material is restricted due to capacity attenuation and poor rate capability caused by crystal structure transformation and irreversible lattice oxygen escape during cycling. The Fe3+-doped effects on lattice structures and electrochemical properties of Li1.2Ni0.26-xMn0.54FexO2 (x = 0, 0.03, 0.05 and 0.08) cathode materials fabricated by a sol-gel method are systematically studied in this paper. Doped materials exhibit good electrochemical performance such as high discharge specific capacity and capacity retention at high current density rates. Li1.2 Ni0.21Mn0.54Fe0.05O2 can supply a specific capacity of 190.7 mAh g-1 with 73.6 % capacity retention after 100th cycle at 2 C, and rate capacities of 230.6, 208.5, 193.1, 172.1 and 105.6 mAh g-1 at 0.1, 0.5, 1, 2 and 5 C, respectively. It is attributed to the enhanced structural stability, enlarged Li layer spacing, intensive interaction between transition metals and oxygen, less manganese disproportionation and oxygen release and increased Li+ diffusion coefficient by Fe3+ doping.
引用
收藏
页数:12
相关论文
共 65 条
[1]   The Effects of Trace Yb Doping on the Electrochemical Performance of Li-Rich Layered Oxides [J].
Bao, Liying ;
Yang, Zeliang ;
Chen, Lai ;
Su, Yuefeng ;
Lu, Yun ;
Li, Weikang ;
Yuan, Feiyu ;
Dong, Jinyang ;
Fang, Youyou ;
Ji, Zhe ;
Shi, Chen ;
Feng, Wu .
CHEMSUSCHEM, 2019, 12 (10) :2294-2301
[2]   Impact of Overlithiation and Al doping on the battery performance of Li-rich layered oxide materials [J].
Celeste, A. ;
Girardi, F. ;
Gigli, L. ;
Pellegrini, V. ;
Silvestri, L. ;
Brutti, S. .
ELECTROCHIMICA ACTA, 2022, 428
[3]   Understanding the Impact of Fe-Doping on the Structure and Battery Performance of a Co-Free Li-Rich Layered Cathodes [J].
Celeste, Arcangelo ;
Paolacci, Matteo ;
Schiavi, Pier Giorgio ;
Brutti, Sergio ;
Navarra, Maria Assunta ;
Silvestri, Laura .
CHEMELECTROCHEM, 2023, 10 (05)
[4]   Exploring a Co-Free, Li-Rich Layered Oxide with Low Content of Nickel as a Positive Electrode for Li-Ion Battery [J].
Celeste, Arcangelo ;
Tuccillo, Mariarosaria ;
Santoni, Antonino ;
Reale, Priscilla ;
Brutti, Sergio ;
Silvestri, Laura .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (10) :11290-11297
[5]   Surface Spinel-Coated and Polyanion-Doped Co-Free Li-Rich Layered Oxide Cathode for High-Performance Lithium-Ion Batteries [J].
Chang, Zhanying ;
Zhang, Yiming ;
He, Wei ;
Wang, Jin ;
Zheng, Hongfei ;
Qu, Baihua ;
Wang, Xinghui ;
Xie, Qingshui ;
Peng, Dong-Liang .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (22) :7464-7473
[6]   Cation and anion Co-doping synergy to improve structural stability of Li- and Mn-rich layered cathode materials for lithium-ion batteries [J].
Chen, Guorong ;
An, Juan ;
Meng, Yiming ;
Yuan, Changzhou ;
Matthews, Bryan ;
Dou, Fei ;
Shi, Liyi ;
Zhou, Yongfeng ;
Song, Pingan ;
Wu, Gang ;
Zhang, Dengsong .
NANO ENERGY, 2019, 57 :157-165
[7]   Impact of P-Doped in Spinel LiNi0.5Mn1.5O4 on Degree of Disorder, Grain Morphology, and Electrochemical Performance [J].
Deng, Yu-Feng ;
Zhao, Shi-Xi ;
Xu, Ya-Hui ;
Gao, Kai ;
Nan, Ce-Wen .
CHEMISTRY OF MATERIALS, 2015, 27 (22) :7734-7742
[8]   Influence of Cationic Substitutions on the Oxygen Loss and Reversible Capacity of Lithium-Rich Layered Oxide Cathodes [J].
Deng, Z. Q. ;
Manthiram, A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (14) :7097-7103
[9]   An Ultra-Long-Life Lithium-Rich Li1.2Mn0.6Ni0.2O2 Cathode by Three-in-One Surface Modification for Lithium-Ion Batteries [J].
Ding, Xiaokai ;
Luo, Dong ;
Cui, Jiaxiang ;
Xie, Huixian ;
Ren, Qingqing ;
Lin, Zhan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (20) :7778-7782
[10]   Oxygen redox chemistry in lithium-rich cathode materials for Li-ion batteries: Understanding from atomic structure to nano-engineering [J].
Farahmandjou, Majid ;
Zhao, Shuoqing ;
Lai, Wei-Hong ;
Sun, Bing ;
Notten, Peter. H. L. ;
Wang, Guoxiu .
NANO MATERIALS SCIENCE, 2022, 4 (04) :322-338