On the Existence of Radially Symmetric Solutions for the p-Laplace Equation with Strong Gradient Nonlinearities

被引:0
作者
Tersenov, Ar. S. [1 ]
机构
[1] Sobolev Inst Math, Novosibirsk, Russia
关键词
Bernstein-Nagumo condition; a priori estimates; radially symmetric solutions; P-Laplace equation; QUASI-LINEAR EQUATIONS; GLOBAL EXISTENCE;
D O I
10.1134/S0037446623060162
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Dirichlet problem for the P-Laplace equation in presence of a gradient not satisfying the Bernstein-Nagumo type condition. We define some class of gradient nonlinearities, for which we prove the existence of a radially symmetric solution with a H & ouml;lder continuous derivative.
引用
收藏
页码:1443 / 1454
页数:12
相关论文
共 20 条
[1]   Existence of bounded solutions for nonlinear elliptic equations in unbounded domains [J].
Dall'Aglio, A ;
De Cicco, V ;
Giachetti, D ;
Puel, JP .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2004, 11 (04) :431-450
[2]   Global Existence for Parabolic Problems Involving the p-Laplacian and a Critical Gradient Term [J].
Dall'Aglio, A. ;
Giachetti, D. ;
de Leon, S. Segura .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (01) :1-48
[3]   Quasilinear equations with dependence on the gradient [J].
De Figueiredo, Djairo G. ;
Sanchez, Justino ;
Ubillac, Pedro .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4862-4868
[4]  
Dwivedi G., 2022, Comm. Math, V30, P149
[5]   Existence and uniqueness of nonnegative solutions of quasilinear equations in R(n) [J].
Franchi, B ;
Lanconelli, E ;
Serrin, J .
ADVANCES IN MATHEMATICS, 1996, 118 (02) :177-243
[6]  
Gilbarg D., 2001, Elliptic Partial Differential Equations of Second Order, DOI DOI 10.1007/978-3-642-61798-0
[7]  
Hartman P., 2022, Ordinary Differential Equations
[8]   Existence and Multiplicity Results for the p-Laplacian with a p-Gradient Term [J].
Iturriaga, Leonelo ;
Lorca, Sebastian ;
Sanchez, Justino .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2008, 15 (06) :729-743
[9]  
Ladyzhenskaya O.A., 2016, Linear and Quasilinear Elliptic Equations
[10]   Comparison principles for p-Laplace equations with lower order terms [J].
Leonori, Tommaso ;
Porretta, Alessio ;
Riey, Giuseppe .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (03) :877-903