Spatiotemporal Analysis of Vegetation Cover in Relation to Its Driving Forces in Qinghai-Tibet Plateau

被引:11
作者
Xu, Tong [1 ,2 ]
Wu, Hua [1 ,2 ]
机构
[1] Tibet Univ, Sch Engn, Lhasa 850032, Peoples R China
[2] Joint Lab Remote Sensing Monitoring Plateau Surfac, Lhasa 850032, Peoples R China
来源
FORESTS | 2023年 / 14卷 / 09期
关键词
Qinghai-Tibet plateau; Normalized Difference Vegetation Index (NDVI); spatial and temporal changes; driving forces; geographic detector; CLIMATE; RESPONSES; NDVI; TEMPERATURE; GRASSLANDS; INCREASE;
D O I
10.3390/f14091835
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
The Tibet Plateau of Qinghai supports complex vegetation types that are ecologically fragile and sensitive to climatic factors. Therefore, it is important to understand the changes in vegetation and the factors responsible for these changes and to maintain the ecosystem balance and promote sustainable development in the region. Therefore, this paper is based on annual SPOT/VEG NDVI (Normalized Difference Vegetation Index) data, land use data, topographic data, temperature data, and precipitation data from 1999 to 2019. The spatiotemporal variation in the NDVI over the Tibetan Plateau in the last 21 years and its response to different driving factors were investigated by using the Theil-Sen slope method, Mann-Kendall test, partial correlation analysis, and geographical detector method. The results showed that (1) the vegetation coverage on the Qinghai-Tibet Plateau showed an increasing trend from 1999 to 2019, with increases in approximately 67.00% of the plateau area. (2) The spatial differences in vegetation coverage were large; notably, low-density vegetation areas decreased obviously, moderate-density vegetation areas accounted for approximately 50% of the total area, high-density vegetation areas were the least common, and the overall growth rate was significant. (3) The NDVI was positively correlated with temperature and precipitation, and a positive correlation was observed in more than 66% of the region. (4) The order of the influence of single driving factors on the NDVI was as follows: precipitation > soil type > altitude > temperature > gradient > slope > population density > GDP. (5) The combined effect of the factors was significantly higher than that of single driving factors, with a notable nonlinear influence. The interactions between meteorological factors, such as precipitation, and topographic factors, such as altitude, were important, with a q-value over 0.79. The results of this study provide some methodological support for the ecological conservation of the Tibetan Plateau, and at the same time establish a scientific and reasonable strategy for vegetation restoration.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Assessment of the Spatiotemporal Impact of Water Conservation on the Qinghai-Tibet Plateau
    Wen, Xin
    Shao, Huaiyong
    Wang, Ying
    Lv, Lingfeng
    Xian, Wei
    Shao, Qiufang
    Shu, Yang
    Yin, Ziqiang
    Liu, Shuhan
    Qi, Jiaguo
    REMOTE SENSING, 2023, 15 (12)
  • [32] Vegetation coverage of desert ecosystems in the Qinghai-Tibet Plateau is underestimated
    Geng, Xin
    Wang, Xunming
    Fang, Hongliang
    Ye, Jiansheng
    Han, Likun
    Gong, Yuan
    Cai, Diwen
    ECOLOGICAL INDICATORS, 2022, 137
  • [33] Spatiotemporal Patterns and Regional Differences in Soil Thermal Conductivity on the Qinghai-Tibet Plateau
    Liu, Wenhao
    Li, Ren
    Wu, Tonghua
    Shi, Xiaoqian
    Zhao, Lin
    Wu, Xiaodong
    Hu, Guojie
    Yao, Jimin
    Wang, Dong
    Xiao, Yao
    Ma, Junjie
    Jiao, Yongliang
    Wang, Shenning
    Zou, Defu
    Zhu, Xiaofan
    Chen, Jie
    Shi, Jianzong
    Qiao, Yongping
    REMOTE SENSING, 2023, 15 (04)
  • [34] Spatiotemporal Changes in Water Storage and Its Driving Factors in the Three-River Headwaters Region, Qinghai-Tibet Plateau
    Zhao, Linlin
    Chen, Rensheng
    Yang, Yong
    Liu, Guohua
    Wang, Xiqiang
    LAND, 2023, 12 (10)
  • [36] Spatiotemporal Variations in Grassland Vulnerability on the Qinghai-Tibet Plateau Based on a Comprehensive Framework
    Zhao, Zhengyuan
    Zhang, Yunlong
    Sun, Siqi
    Li, Ting
    Lu, Yihe
    Jiang, Wei
    Wu, Xing
    SUSTAINABILITY, 2022, 14 (09)
  • [37] The new indices to describe temporal discontinuity of snow cover on the Qinghai-Tibet Plateau
    Wang, Jing
    Tang, Lin
    Lu, Heng
    NPJ CLIMATE AND ATMOSPHERIC SCIENCE, 2024, 7 (01):
  • [38] Spatiotemporal Variation in the Land Use/Cover of Alluvial Fans in Lhasa River Basin, Qinghai-Tibet Plateau
    Chen, Tongde
    Jiao, Juying
    Wei, Wei
    Li, Jianjun
    Zhang, Ziqi
    Yang, Haizhen
    Ma, Huifang
    AGRICULTURE-BASEL, 2023, 13 (02):
  • [39] Spatiotemporal variations of water conservation and its influencing factors in ecological barrier region, Qinghai-Tibet Plateau
    Xue, Jian
    Li, Zongxing
    Feng, Qi
    Gui, Juan
    Zhang, Baijuan
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2022, 42
  • [40] Spatial-Temporal Characteristics of Precipitation and Its Relationship with Land Use/Cover Change on the Qinghai-Tibet Plateau, China
    Zhang, Bo
    Zhou, Wei
    LAND, 2021, 10 (03)