Investigating the Prediction of Breast Cancer Diagnosis by Use of Support Vector Machines

被引:1
作者
Maanav, A. [1 ]
Mithun, K. [1 ]
Naparajith, T. L. [1 ]
Suraj, K. Maarvin Abiram [1 ]
Bose, Regin [1 ]
Brearley, Belwin J. [2 ]
机构
[1] Chennai Inst Technol, Chennai, Tamil Nadu, India
[2] BS Abdur Rahman Crescent Inst Sci & Technol, Chennai, Tamil Nadu, India
关键词
Breast Cancer Diagnosis; Deep Learning; Machine Learning; Medical Imaging; Support Vector Machine;
D O I
10.4018/IJHISI.325219
中图分类号
R-058 [];
学科分类号
摘要
This study examines the use of support vector machine (SVM) learning algorithms in predictive analytics models for the detection of breast cancer. This study uses the breast cancer Wisconsin dataset and evaluates the model's performance using measures including accuracy, F1-score, precision, and recall. Comparisons are made between the SVM model's performance and those of alternative classification techniques including logistic regression, decision trees, and random forests. The findings demonstrate the usefulness of utilising predictive analytics models, notably the SVM algorithm, for the detection of breast cancer. The SVM model demonstrated significant predictive effectiveness and accuracy, making it a viable choice of tool for clinicians in the early identification and diagnosis of breast cancer.
引用
收藏
页数:16
相关论文
共 17 条
  • [1] Bag of feature and support vector machine based early diagnosis of skin cancer
    Arora, Ginni
    Dubey, Ashwani Kumar
    Jaffery, Zainul Abdin
    Rocha, Alvaro
    [J]. NEURAL COMPUTING & APPLICATIONS, 2022, 34 (11) : 8385 - 8392
  • [2] Baryak, 2019, IEEE C PUBLICATION
  • [3] Breast Cancer Statistics, 2022
    Giaquinto, Angela N.
    Sung, Hyuna
    Miller, Kimberly D.
    Kramer, Joan L.
    Newman, Lisa A.
    Minihan, Adair
    Jemal, Ahmedin
    Siegel, Rebecca L.
    [J]. CA-A CANCER JOURNAL FOR CLINICIANS, 2022, 72 (06) : 524 - 541
  • [4] Goga A. B., 2023, ARTIFICIAL INTELLIGE
  • [5] Hossin M. M., 2023, B ELECT ENG INFORM
  • [6] Personalized medicine in breast cancer: pharmacogenomics approaches
    Jeibouei, Shabnam
    Akbari, Mohammad Esmael
    Kalbasi, Alireza
    Aref, Amir Reza
    Ajoudanian, Mohammad
    Rezvani, Alireza
    Zali, Hakimeh
    [J]. PHARMACOGENOMICS & PERSONALIZED MEDICINE, 2019, 12 : 59 - 73
  • [7] Mukhopadhyay S., 2022, MED HEALTHCARE J
  • [8] Nemade & Fegade, 2023, MACHINE LEARNING TEC
  • [9] 'Omics Approaches to Explore the Breast Cancer Landscape
    Parsons, Joseph
    Francavilla, Chiara
    [J]. FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2020, 7
  • [10] Molecular portraits of human breast tumours
    Perou, CM
    Sorlie, T
    Eisen, MB
    van de Rijn, M
    Jeffrey, SS
    Rees, CA
    Pollack, JR
    Ross, DT
    Johnsen, H
    Akslen, LA
    Fluge, O
    Pergamenschikov, A
    Williams, C
    Zhu, SX
    Lonning, PE
    Borresen-Dale, AL
    Brown, PO
    Botstein, D
    [J]. NATURE, 2000, 406 (6797) : 747 - 752