Intelligent estimation on state of health of lithium-ion power batteries based on failure feature extraction

被引:51
作者
Zuo, Hongyan [1 ,2 ]
Liang, Jingwei [1 ,2 ]
Zhang, Bin [1 ,2 ,3 ]
Wei, Kexiang [1 ,2 ]
Zhu, Hong [4 ]
Tan, Jiqiu [1 ,2 ]
机构
[1] Hunan Inst Engn, Hunan Prov Key Lab Vehicle Power & Transmiss Syst, Xiangtan 411104, Peoples R China
[2] Hunan Inst Engn, Sch Mech Engn, Xiangtan 411104, Peoples R China
[3] Hunan Inst Engn, Sch Elect & Informat Engn, Xiangtan 411104, Peoples R China
[4] Hunan Bangzer Technol Co Ltd, Xiangtan 411100, Peoples R China
关键词
Intelligent estimation; Lithium-ion power batteries; State of health; Failure feature extraction; BUTANOL-ETHANOL ABE; ENERGY-CONSUMPTION; FUEL CANDIDATE; MODEL; DEGRADATION; LIFE;
D O I
10.1016/j.energy.2023.128794
中图分类号
O414.1 [热力学];
学科分类号
摘要
In order to provide an accurate and reliable effective state-of-health (SOH) estimation, a novel hybrid data-driven estimation method by failure feature extraction is proposed. Firstly, influencing factors which reflect the failure of lithium-ion power batteries are studied, and three failure features of lithium-ion power batteries used as inputs of the estimation model are extracted by fuzzy grey relational analysis (FGRA) method. Then, the improved Least Squares Support Vector Machine (LSSVM) model is employed to estimate the SOH under different ambient temperature conditions. The results show that CC charging time, CV charging capacity and CV charging average temperature are determined as the failure features of the SOH estimation model, whose correlation degree to the battery capacity are 0.8774, 0.8104 and 0.8771, respectively. Compared with SVM, the improved LSSVM model has higher SOH estimation accuracy for the lithium-ion power battery under different ambient temperature conditions. In addition, the SOH estimation curves basically matches the actual curves, where the SOH estimation errors are less than 0.02. Moreover, the mean square error accuracy of the prediction results is at the level of 0.00001, and the determination coefficient is between 0.92 and 0.997. This work provides reference for enhancing the SOH estimation performance and safety of lithium-ion power batteries.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Electrochemical Impedance Spectroscopy Based on the State of Health Estimation for Lithium-Ion Batteries
    Li, Dezhi
    Yang, Dongfang
    Li, Liwei
    Wang, Licheng
    Wang, Kai
    ENERGIES, 2022, 15 (18)
  • [42] State of Health Prediction of Lithium-Ion Batteries Based on the Discharge Voltage and Temperature
    Yang, Yanru
    Wen, Jie
    Shi, Yuanhao
    Zeng, Jianchao
    ELECTRONICS, 2021, 10 (12)
  • [43] A feature reuse based multi-model fusion method for state of health estimation of lithium-ion batteries
    Bai, Junqi
    Huang, Jiayin
    Luo, Kai
    Yang, Fan
    Xian, Yanhua
    JOURNAL OF ENERGY STORAGE, 2023, 70
  • [44] State of Health Estimation for Lithium-Ion Batteries Based on Peak Region Feature Parameters of Incremental Capacity Curve
    Yang S.
    Luo B.
    Wang J.
    Kang J.
    Zhu G.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2021, 36 (11): : 2277 - 2287
  • [45] Real-Time State-of-Health Estimation of Lithium-Ion Batteries Based on the Equivalent Internal Resistance
    Tan, Xiaojun
    Tan, Yuqing
    Zhan, Di
    Yu, Ze
    Fan, Yuqian
    Qiu, Jianzhi
    Li, Jun
    IEEE ACCESS, 2020, 8 : 56811 - 56822
  • [46] State of health estimation for lithium-ion batteries based on temperature prediction and gated recurrent unit neural network
    Chen, Zheng
    Zhao, Hongqian
    Zhang, Yuanjian
    Shen, Shiquan
    Shen, Jiangwei
    Liu, Yonggang
    JOURNAL OF POWER SOURCES, 2022, 521
  • [47] An accurate state of health estimation method for lithium-ion batteries based on expansion force analysis
    Xu, Qing
    Wang, Xiaoyang
    Ye, Hong
    Gong, Lili
    Tan, Peng
    Pan, Tingrui
    ENERGY, 2025, 325
  • [48] Robust Online Estimation of State of Health for Lithium-Ion Batteries Based on Capacities under Dynamical Operation Conditions
    Wu, Xiaoxuan
    Chen, Jian
    Tang, Hu
    Xu, Ke
    Shao, Mingding
    Long, Yu
    BATTERIES-BASEL, 2024, 10 (07):
  • [49] Improving the state-of-health estimation of lithium-ion batteries based on limited labeled data
    Han, Dou
    Zhang, Yongzhi
    Ruan, Haijun
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [50] State of Health Estimation of Lithium-Ion Batteries Based on Hybrid Neural Networks with Residual Connections
    Zhang, Xugang
    Wang, Ze
    Gong, Qingshan
    Wang, Yan
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2025, 172 (02)