Intelligent estimation on state of health of lithium-ion power batteries based on failure feature extraction

被引:69
作者
Zuo, Hongyan [1 ,2 ]
Liang, Jingwei [1 ,2 ]
Zhang, Bin [1 ,2 ,3 ]
Wei, Kexiang [1 ,2 ]
Zhu, Hong [4 ]
Tan, Jiqiu [1 ,2 ]
机构
[1] Hunan Inst Engn, Hunan Prov Key Lab Vehicle Power & Transmiss Syst, Xiangtan 411104, Peoples R China
[2] Hunan Inst Engn, Sch Mech Engn, Xiangtan 411104, Peoples R China
[3] Hunan Inst Engn, Sch Elect & Informat Engn, Xiangtan 411104, Peoples R China
[4] Hunan Bangzer Technol Co Ltd, Xiangtan 411100, Peoples R China
关键词
Intelligent estimation; Lithium-ion power batteries; State of health; Failure feature extraction; BUTANOL-ETHANOL ABE; ENERGY-CONSUMPTION; FUEL CANDIDATE; MODEL; DEGRADATION; LIFE;
D O I
10.1016/j.energy.2023.128794
中图分类号
O414.1 [热力学];
学科分类号
摘要
In order to provide an accurate and reliable effective state-of-health (SOH) estimation, a novel hybrid data-driven estimation method by failure feature extraction is proposed. Firstly, influencing factors which reflect the failure of lithium-ion power batteries are studied, and three failure features of lithium-ion power batteries used as inputs of the estimation model are extracted by fuzzy grey relational analysis (FGRA) method. Then, the improved Least Squares Support Vector Machine (LSSVM) model is employed to estimate the SOH under different ambient temperature conditions. The results show that CC charging time, CV charging capacity and CV charging average temperature are determined as the failure features of the SOH estimation model, whose correlation degree to the battery capacity are 0.8774, 0.8104 and 0.8771, respectively. Compared with SVM, the improved LSSVM model has higher SOH estimation accuracy for the lithium-ion power battery under different ambient temperature conditions. In addition, the SOH estimation curves basically matches the actual curves, where the SOH estimation errors are less than 0.02. Moreover, the mean square error accuracy of the prediction results is at the level of 0.00001, and the determination coefficient is between 0.92 and 0.997. This work provides reference for enhancing the SOH estimation performance and safety of lithium-ion power batteries.
引用
收藏
页数:14
相关论文
共 56 条
[1]   The formation and stability of the solid electrolyte interface on the graphite anode [J].
Agubra, Victor A. ;
Fergus, Jeffrey W. .
JOURNAL OF POWER SOURCES, 2014, 268 :153-162
[2]   Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries [J].
Andre, Dave ;
Appel, Christian ;
Soczka-Guth, Thomas ;
Sauer, Dirk Uwe .
JOURNAL OF POWER SOURCES, 2013, 224 :20-27
[3]   A generic model-free approach for lithium-ion battery health management [J].
Bai, Guangxing ;
Wang, Pingfeng ;
Hu, Chao ;
Pecht, Michael .
APPLIED ENERGY, 2014, 135 :247-260
[4]   State-of-Health Estimation of Lithium-Ion Batteries by Fusing an Open Circuit Voltage Model and Incremental Capacity Analysis [J].
Bian, Xiaolei ;
Wei, Zhongbao Gae ;
Li, Weihan ;
Pou, Josep ;
Sauer, Dirk Uwe ;
Liu, Longcheng .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (02) :2226-2236
[5]   State of health estimation of lithium-ion batteries with a temporal convolutional neural network using partial load profiles [J].
Bockrath, Steffen ;
Lorentz, Vincent ;
Pruckner, Marco .
APPLIED ENERGY, 2023, 329
[6]   Removal and mechanism analysis of NOx emissions in carbon-free ammonia combustion systems with a secondary fuel injection [J].
Cai, Tao ;
Zhao, Dan ;
Ji, Lin ;
Agarwal, Avinash Kumar .
FUEL, 2023, 344
[7]   State of health estimation for lithium-ion batteries based on temperature prediction and gated recurrent unit neural network [J].
Chen, Zheng ;
Zhao, Hongqian ;
Zhang, Yuanjian ;
Shen, Shiquan ;
Shen, Jiangwei ;
Liu, Yonggang .
JOURNAL OF POWER SOURCES, 2022, 521
[8]   Experimental validation of a vanadium redox flow battery model for state of charge and state of health estimation [J].
Clemente, Alejandro ;
Montiel, Manuel ;
Barreras, Felix ;
Lozano, Antonio ;
Costa-Castello, Ramon .
ELECTROCHIMICA ACTA, 2023, 449
[9]  
Deng Julong, 1989, Journal of Grey Systems, V1, P1
[10]   Feature-based lithium-ion battery state of health estimation with artificial neural networks [J].
Driscoll, Lewis ;
de la Torre, Sebastian ;
Antonio Gomez-Ruiz, Jose .
JOURNAL OF ENERGY STORAGE, 2022, 50