Shared control of a 16?semiconductor quantum dot crossbar array

被引:80
作者
Borsoi, Francesco [1 ,2 ]
Hendrickx, Nico W. [1 ,2 ]
John, Valentin [1 ,2 ]
Meyer, Marcel [1 ,2 ]
Motz, Sayr [1 ,2 ]
van Riggelen, Floor [1 ,2 ]
Sammak, Amir [1 ,3 ]
de Snoo, Sander L. [1 ,2 ]
Scappucci, Giordano [1 ,2 ]
Veldhorst, Menno [1 ,2 ]
机构
[1] QuTech, Delft, Netherlands
[2] Delft Univ Technol, Kavli Inst Nanosci, Delft, Netherlands
[3] Netherlands Org Appl Sci Res TNO, Delft, Netherlands
基金
荷兰研究理事会;
关键词
QUBITS; LOGIC;
D O I
10.1038/s41565-023-01491-3
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The efficient control of a large number of qubits is one of the most challenging aspects for practical quantum computing. Current approaches in solid-state quantum technology are based on brute-force methods, where each and every qubit requires at least one unique control line-an approach that will become unsustainable when scaling to the required millions of qubits. Here, inspired by random-access architectures in classical electronics, we introduce the shared control of semiconductor quantum dots to efficiently operate a two-dimensional crossbar array in planar germanium. We tune the entire array, comprising 16 quantum dots, to the few-hole regime. We then confine an odd number of holes in each site to isolate an unpaired spin per dot. Moving forward, we demonstrate on a vertical and a horizontal double quantum dot a method for the selective control of the interdot coupling and achieve a tunnel coupling tunability over more than 10 GHz. The operation of a quantum electronic device with fewer control terminals than tunable experimental parameters represents a compelling step forward in the construction of scalable quantum technology. An efficient control strategy is designed for quantum dot arrays, drawing inspiration from classical semiconductor technology. A two-dimensional array of 16 semiconductor quantum dots is operated using only a few shared control lines.
引用
收藏
页码:21 / 27
页数:9
相关论文
共 45 条
[1]  
Borsoi F., 2023, ZENODO, DOI [10.5281/zenodo.8083119, DOI 10.5281/ZENODO.8083119]
[2]   Semiconductor qubits in practice [J].
Chatterjee, Anasua ;
Stevenson, Paul ;
De Franceschi, Silvano ;
Morello, Andrea ;
de Leon, Nathalie P. ;
Kuemmeth, Ferdinand .
NATURE REVIEWS PHYSICS, 2021, 3 (03) :157-177
[3]  
Dawid A., 2022, PREPRINT
[4]   Electron cotunneling in a semiconductor quantum dot [J].
De Franceschi, S ;
Sasaki, S ;
Elzerman, JM ;
van der Wiel, WG ;
Tarucha, S ;
Kouwenhoven, LP .
PHYSICAL REVIEW LETTERS, 2001, 86 (05) :878-881
[5]   Differential charge sensing and charge delocalization in a tunable double quantum dot [J].
DiCarlo, L ;
Lynch, HJ ;
Johnson, AC ;
Childress, LI ;
Crockett, K ;
Marcus, CM ;
Hanson, MP ;
Gossard, AC .
PHYSICAL REVIEW LETTERS, 2004, 92 (22) :226801-1
[6]   Tunable Coupling and Isolation of Single Electrons in Silicon Metal Oxide-Semiconductor Quantum Dots [J].
Eenink, H. G. J. ;
Petit, L. ;
Lawrie, W. I. L. ;
Clarke, J. S. ;
Vandersypen, L. M. K. ;
Veldhorst, M. .
NANO LETTERS, 2019, 19 (12) :8653-8657
[7]   Surface codes: Towards practical large-scale quantum computation [J].
Fowler, Austin G. ;
Mariantoni, Matteo ;
Martinis, John M. ;
Cleland, Andrew N. .
PHYSICAL REVIEW A, 2012, 86 (03)
[8]   Rent's rule and extensibility in quantum computing [J].
Franke, D. P. ;
Clarke, J. S. ;
Vandersypen, L. M. K. ;
Veldhorst, M. .
MICROPROCESSORS AND MICROSYSTEMS, 2019, 67 :1-7
[9]   A Flexible Design Platform for Si/SiGe Exchange-Only Qubits with Low Disorder [J].
Ha, Wonill ;
Ha, Sieu D. ;
Choi, Maxwell D. ;
Tang, Yan ;
Schmitz, Adele E. ;
Levendorf, Mark P. ;
Lee, Kangmu ;
Chappell, James M. ;
Adams, Tower S. ;
Hulbert, Daniel R. ;
Acuna, Edwin ;
Noah, Ramsey S. ;
Matten, Justine W. ;
Jura, Michael P. ;
Wright, Jeffrey A. ;
Rakher, Matthew T. ;
Borselli, Matthew G. .
NANO LETTERS, 2022, 22 (03) :1443-1448
[10]   Spins in few-electron quantum dots [J].
Hanson, R. ;
Kouwenhoven, L. P. ;
Petta, J. R. ;
Tarucha, S. ;
Vandersypen, L. M. K. .
REVIEWS OF MODERN PHYSICS, 2007, 79 (04) :1217-1265