ON SIGNS OF FOURIER COEFFICIENTS OF HECKE-MAASS CUSP FORMS ON GL3

被引:0
作者
Jaasaari, Jesse [1 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
基金
英国工程与自然科学研究理事会;
关键词
EIGENVALUES; NUMBER; ORTHOGONALITY;
D O I
10.1090/tran/9012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider sign changes of Fourier coefficients of Hecke-Maass cusp forms for the group SL3(Z). When the underlying form is self-dual, we show that there are >& epsilon; X5/6-& epsilon; sign changes among the coefficients {A(m, 1)}m & LE;X and that there is a positive proportion of sign changes for many self-dual forms. Similar result concerning the positive proportion of sign changes also hold for the real-valued coefficients A(m, m) for generic GL3 cusp forms, a result which is based on a new effective Sato-Tate type theorem for a family of GL3 cusp forms we establish. In addition, non-vanishing of the Fourier coefficients is studied under the Ramanujan-Petersson conjecture.
引用
收藏
页码:8193 / 8223
页数:31
相关论文
共 46 条
[1]  
[Anonymous], 1981, Inst. Hautes Etudes Sci. Publ. Math.
[2]  
Bernstein S. N., 1913, Commun. Soc. Math. Kharkov., V13, P1, DOI [10.2307/27203467, DOI 10.2307/27203467]
[3]   A Sato-Tate law for GL(3) [J].
Blomer, Valentin ;
Buttcane, Jack ;
Raulf, Nicole .
COMMENTARII MATHEMATICI HELVETICI, 2014, 89 (04) :895-919
[4]   Applications of the Kuznetsov formula on GL(3) [J].
Blomer, Valentin .
INVENTIONES MATHEMATICAE, 2013, 194 (03) :673-729
[5]   Plancherel Distribution of Satake Parameters of Maass Cusp Forms on GL3 [J].
Buttcane, Jack ;
Zhou, Fan .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (05) :1417-1444
[6]  
CASSELMAN W, 1980, COMPOS MATH, V41, P207
[7]  
Goldfeld D, 2006, CAMBRIDGE STUD ADV M, V99
[8]   An orthogonality relation for GL(4, R) (with an appendix by Bingrong Huang) [J].
Goldfeld, Dorian ;
Stade, Eric ;
Woodbury, Michael .
FORUM OF MATHEMATICS SIGMA, 2021, 9
[9]   WHEN THE SIEVE WORKS [J].
Granville, Andrew ;
Koukoulopoulos, Dimitris ;
Matomaki, Kaisa .
DUKE MATHEMATICAL JOURNAL, 2015, 164 (10) :1935-1969
[10]   An orthogonality relation for a thin family of GL(3) Maass forms [J].
Guerreiro, Joao .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (08) :2277-2294