Intrinsic and external active sites of single-atom catalysts

被引:3
|
作者
Yao, Xue [1 ]
Halpren, Ethan [1 ]
Liu, Ye Zhou [1 ]
Shan, Chung Hsuan [1 ]
Chen, Zhi Wen [1 ]
Chen, Li Xin [1 ]
Singh, Chandra Veer [1 ,2 ]
机构
[1] Univ Toronto, Dept Mat Sci & Engn, Toronto, ON M5S 3E4, Canada
[2] Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
METAL-ORGANIC FRAMEWORKS; OXYGEN REDUCTION REACTION; WATER-GAS SHIFT; CO OXIDATION; ELECTROCHEMICAL REDUCTION; HYDROGEN-PRODUCTION; NITROGEN REDUCTION; RATIONAL DESIGN; PORPHYRIN SHEET; DOPED GRAPHENE;
D O I
10.1016/j.isci.2023.107275
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Active components with suitable supports are the common paradigm for industrial catalysis, and the catalytic activity usually increases with minimizing the active component size, generating a new frontier in catalysis, single-atom catalysts (SACs). However, further improvement of SACs activity is limited by the relatively low loading of single atoms (SAs, which are heteroatoms for most SACs, i.e., external active sites) because of the highly favorable aggregation of single heteroatoms during preparation. Research interest should be shifted to investigate SACs with intrinsic SAs, which could circumvent the aggregation of external SAs and consequently increase the SAs loading while maintaining them individual to further improve the activity. In this review, SACs with external or intrinsic SAs are discussed and, at last, the perspectives and challenges for obtaining high-loading SACs with intrinsic SAs are outlined.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Synthesis Strategies, Catalytic Applications, and Performance Regulation of Single-Atom Catalysts
    Xi, Jiangbo
    Jung, Hyun Seung
    Xu, Yun
    Xiao, Fei
    Bae, Jong Wook
    Wang, Shuai
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (12)
  • [32] Support Effects in Single-Atom Platinum Catalysts for Electrochemical Oxygen Reduction
    Yang, Sungeun
    Tak, Young Joo
    Kim, Jiwhan
    Soon, Aloysius
    Lee, Hyunjoo
    ACS CATALYSIS, 2017, 7 (02): : 1301 - 1307
  • [33] Elucidation of the Active Sites in Single-Atom Pd1/CeO2 Catalysts for Low-Temperature CO Oxidation
    Jiang, Dong
    Wan, Gang
    Garcia-Vargas, Carlos E.
    Li, Linze
    Pereira-Hernandez, Xavier Isidro
    Wang, Chongmin
    Wang, Yong
    ACS CATALYSIS, 2020, 10 (19) : 11356 - 11364
  • [34] Coordination Engineering of Single-Atom Catalysts for the Oxygen Reduction Reaction: A Review
    Zhang, Jincheng
    Yang, Hongbin
    Liu, Bin
    ADVANCED ENERGY MATERIALS, 2021, 11 (03)
  • [35] Ammonia electrosynthesis on single-atom catalysts: Mechanistic understanding and recent progress
    Li, Panpan
    Fang, Zhiwei
    Jin, Zhaoyu
    Yu, Guihua
    CHEMICAL PHYSICS REVIEWS, 2021, 2 (04):
  • [36] Single-atom Automobile Exhaust Catalysts
    Lu, Yubing
    Zhang, Zihao
    Lin, Fan
    Wang, Huamin
    Wang, Yong
    CHEMNANOMAT, 2020, 6 (12) : 1659 - 1682
  • [37] Single-Atom Catalysts for Photocatalytic Reactions
    Wang, Qiushi
    Zhang, Dafeng
    Chen, Yong
    Fu, Wen-Fu
    Lv, Xiao-Jun
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (07) : 6430 - 6443
  • [38] Biomedical Applications of Single-atom Catalysts
    Yuan, Zhongwen
    He, Lizhen
    Chen, Tianfeng
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2020, 41 (12): : 2690 - 2709
  • [39] Single-Atom Catalysts: Preparation and Applications in Environmental Catalysis
    Yu, Xiaohui
    Deng, Jiguang
    Liu, Yuxi
    Jing, Lin
    Hou, Zhiquan
    Pei, Wenbo
    Dai, Hongxing
    CATALYSTS, 2022, 12 (10)
  • [40] Recent advances in single-atom catalysts for CO oxidation
    Zhang, Haotian
    Fang, Siyuan
    Hu, Yun Hang
    CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 2022, 64 (03): : 491 - 532