Real-Time CNN-Based Driver Distraction & Drowsiness Detection System

被引:2
|
作者
Almazroi, Abdulwahab Ali [1 ]
Alqarni, Mohammed A. [2 ]
Aslam, Nida [3 ]
Shah, Rizwan Ali [4 ]
机构
[1] Univ Jeddah, Coll Comp & Informat Technol Khulais, Dept Informat Technol, Jeddah, Saudi Arabia
[2] Univ Jeddah, Coll Comp Sci & Engn, Dept Software Engn, Jeddah, Saudi Arabia
[3] Natl Coll Business Adm & Econ, Dept Comp Sci, Bahawalpur Campus, Bahawalpur 63100, Pakistan
[4] Islamia Univ Bahawalpur, Dept Comp Sci & Informat Technol, Rahim Yar Khan Campus, Bahawalpur 64200, Punjab, Pakistan
来源
关键词
Deep learning; convolutional neural network; Tensorflow; drowsiness and yawn detection; seat belt detection; object detection; VEHICLE; FATIGUE;
D O I
10.32604/iasc.2023.039732
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nowadays days, the chief grounds of automobile accidents are driver fatigue and distractions. With the development of computer vision technology, a cutting-edge system has the potential to spot driver distractions or sleepiness and alert them, reducing accidents. This paper presents a novel approach to detecting driver tiredness based on eye and mouth movements and object identification that causes a distraction while operating a motor vehicle. Employing the facial landmarks that the camera picks up and sends to classify using a Convolutional Neural Network (CNN) any changes by focusing on the eyes and mouth zone, precision is achieved. One of the tasks that must be performed in the transit system is seat belt detection to lessen accidents caused by sudden stops or high-speed collisions with other cars. A method is put forth to use convolution neural networks to determine whether the motorist is wearing a seat belt when a driver is sleepy, preoccupied, or not wearing their seat belt, this system alerts them with an alarm, and if they don't wake up by a predetermined time of 3 s threshold, an automatic message is sent to law enforcement agencies. The suggested CNN-based model exhibits greater accuracy with 97%. It can be utilized to develop a system that detects driver attention or sleeps in real-time.
引用
收藏
页码:2153 / 2174
页数:22
相关论文
共 50 条
  • [31] Real-time Drowsiness Detection Algorithm for Driver State Monitoring Systems
    Baek, Jang Woon
    Han, Byung-Gil
    Kim, Kwang-Ju
    Chung, Yun-Su
    Lee, Soo-In
    2018 TENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2018), 2018, : 73 - 75
  • [32] Real-Time Driver Drowsiness Detection using Facial Action Units
    Vijay, Malaika
    Vinayak, Nandagopal Netrakanti
    Nunna, Maanvi
    Natarajan, Subramanyam
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 10113 - 10119
  • [33] Development of a CNN-Based System for Real-Time Process Monitoring and Anomaly Detection in CNC Welding Robots
    Lee, Soo Min
    Son, Ho Jun
    Lee, Jae Sun
    JOURNAL OF THE KOREAN SOCIETY FOR NONDESTRUCTIVE TESTING, 2024, 44 (03) : 180 - 190
  • [34] Heterogeneous FPGA-based System for Real-Time Drowsiness Detection
    Migali, Andrea
    Spagnolo, Fanny
    Corsonello, Pasquale
    PRIME 2022: 17TH INTERNATIONAL CONFERENCE ON PHD RESEARCH IN MICROELECTRONICS AND ELECTRONICS, 2022, : 77 - 80
  • [35] Smartphone-based drowsiness detection system for drivers in real-time
    Chatterjee, Iman
    Roy, Sarbani
    13TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED NETWORKS AND TELECOMMUNICATION SYSTEMS (IEEE ANTS), 2019,
  • [36] A CNN-Based Real-Time Dense Stereo SLAM System on Embedded FPGA
    Huang, Qian
    Zhang, Yu
    Zheng, Jianing
    Shang, Gaoxing
    Chen, Gang
    ARTIFICIAL INTELLIGENCE, CICAI 2023, PT II, 2024, 14474 : 569 - 574
  • [37] A Real-Time CNN-Based Lightweight Mobile Masked Face Recognition System
    Kocacinar, Busra
    Tas, Bilal
    Akbulut, Fatma Patlar
    Catal, Cagatay
    Mishra, Deepti
    IEEE ACCESS, 2022, 10 : 63496 - 63507
  • [38] DEEP CNN BASED APPROACH FOR DRIVER DROWSINESS DETECTION
    Jumana, R.
    Jacob, Chinnu
    2022 IEEE INTERNATIONAL POWER AND RENEWABLE ENERGY CONFERENCE, IPRECON, 2022,
  • [39] Real-Time Drowsiness Detection System for an Intelligent Vehicle
    Javier Flores, Marco
    Maria Armingol, Jose
    de la Escalera, Arturo
    2008 IEEE INTELLIGENT VEHICLES SYMPOSIUM, VOLS 1-3, 2008, : 1 - +
  • [40] Real-time Driver Drowsiness Detection based on Eye Movement and Yawning using Facial Landmark
    Al-madani, Ali Mansour
    Gaikwad, Ashok T.
    Mahale, Vivek
    Ahmed, Zeyad A. T.
    Shareef, Ahmed Abdullah A.
    2021 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2021,