Real-Time CNN-Based Driver Distraction & Drowsiness Detection System

被引:2
|
作者
Almazroi, Abdulwahab Ali [1 ]
Alqarni, Mohammed A. [2 ]
Aslam, Nida [3 ]
Shah, Rizwan Ali [4 ]
机构
[1] Univ Jeddah, Coll Comp & Informat Technol Khulais, Dept Informat Technol, Jeddah, Saudi Arabia
[2] Univ Jeddah, Coll Comp Sci & Engn, Dept Software Engn, Jeddah, Saudi Arabia
[3] Natl Coll Business Adm & Econ, Dept Comp Sci, Bahawalpur Campus, Bahawalpur 63100, Pakistan
[4] Islamia Univ Bahawalpur, Dept Comp Sci & Informat Technol, Rahim Yar Khan Campus, Bahawalpur 64200, Punjab, Pakistan
关键词
Deep learning; convolutional neural network; Tensorflow; drowsiness and yawn detection; seat belt detection; object detection; VEHICLE; FATIGUE;
D O I
10.32604/iasc.2023.039732
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nowadays days, the chief grounds of automobile accidents are driver fatigue and distractions. With the development of computer vision technology, a cutting-edge system has the potential to spot driver distractions or sleepiness and alert them, reducing accidents. This paper presents a novel approach to detecting driver tiredness based on eye and mouth movements and object identification that causes a distraction while operating a motor vehicle. Employing the facial landmarks that the camera picks up and sends to classify using a Convolutional Neural Network (CNN) any changes by focusing on the eyes and mouth zone, precision is achieved. One of the tasks that must be performed in the transit system is seat belt detection to lessen accidents caused by sudden stops or high-speed collisions with other cars. A method is put forth to use convolution neural networks to determine whether the motorist is wearing a seat belt when a driver is sleepy, preoccupied, or not wearing their seat belt, this system alerts them with an alarm, and if they don't wake up by a predetermined time of 3 s threshold, an automatic message is sent to law enforcement agencies. The suggested CNN-based model exhibits greater accuracy with 97%. It can be utilized to develop a system that detects driver attention or sleeps in real-time.
引用
收藏
页码:2153 / 2174
页数:22
相关论文
共 50 条
  • [1] A CNN-Based Approach for Driver Drowsiness Detection by Real-Time Eye State Identification
    Florez, Ruben
    Palomino-Quispe, Facundo
    Coaquira-Castillo, Roger Jesus
    Herrera-Levano, Julio Cesar
    Paixao, Thuanne
    Alvarez, Ana Beatriz
    APPLIED SCIENCES-BASEL, 2023, 13 (13):
  • [2] A CNN-Based Wearable System for Driver Drowsiness Detection
    Li, Yongkai
    Zhang, Shuai
    Zhu, Gancheng
    Huang, Zehao
    Wang, Rong
    Duan, Xiaoting
    Wang, Zhiguo
    SENSORS, 2023, 23 (07)
  • [3] Driver drowsiness shield (DDSH): a real-time driver drowsiness detection system
    Archita Bhanja
    Dibyajyoti Parhi
    Dipankar Gajendra
    Kreetish Sinha
    Arup Kumar Sahoo
    ROBOMECH Journal, 12 (1):
  • [4] A CNN-based Deep Learning Framework for Driver's Drowsiness Detection
    Sohail, Ali
    Shah, Asghar Ali
    Ilyas, Sheeba
    Alshammry, Nizal
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (03) : 169 - 178
  • [5] Real-time Driver Drowsiness Detection using Deep Learning
    Dipu, Md Tanvir Ahammed
    Hossain, Syeda Sumbul
    Arafat, Yeasir
    Rafiq, Fatama Binta
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (07) : 844 - 850
  • [6] Real-Time Driver-Drowsiness Detection System Using Facial Features
    Deng, Wanghua
    Wu, Ruoxue
    IEEE ACCESS, 2019, 7 : 118727 - 118738
  • [7] Real-time Driver Drowsiness Detection using Deep Learning
    Dipu M.T.A.
    Hossain S.S.
    Arafat Y.
    Rafiq F.B.
    Dipu, Md. Tanvir Ahammed, 1600, Science and Information Organization (12): : 844 - 850
  • [8] Stacked ensemble classification based real-time driver drowsiness detection
    Sistla V.
    Kolli V.K.K.
    Kukkapalli N.B.
    Katuri S.S.
    Vallabhajosyula S.
    International Journal of Safety and Security Engineering, 2020, 10 (03) : 365 - 371
  • [9] Real-Time Driver Drowsiness Detection Using Wearable Technology
    Misbhauddin, Mohammed
    AlMutlaq, AlReem
    Almithn, Alaa
    Alshukr, Norah
    Aleesa, Maryam
    4TH INTERNATIONAL CONFERENCE ON SMART CITY APPLICATIONS (SCA' 19), 2019,
  • [10] Real Time Driver Drowsiness Detection Based on Convolution Neural Network
    Ahmed, M. A.
    Hussein, Harith A.
    Omar, Mohammed Basim
    Hameed, Qabas A.
    JOURNAL OF ALGEBRAIC STATISTICS, 2022, 13 (02) : 2006 - 2012