FRACTIONAL HERMITE-HADAMARD INEQUALITY, SIMPSON'S AND OSTROWSKI'S TYPE INEQUALITIES FOR CONVEX FUNCTIONS WITH RESPECT TO A PAIR OF FUNCTIONS

被引:0
作者
Xie, Jianqiang [1 ]
Ali, Muhammad Aamir [2 ]
Budak, Huseyin [3 ]
Feckan, Michal [4 ,5 ]
Sitthiwirattham, Thanin [6 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing, Peoples R China
[3] Duzce Univ, Dept Math, Duzce, Turkiye
[4] Comenius Univ, Dept Math Anal & Numer Math, Bratislava, Slovakia
[5] Slovak Acad Sci, Math Inst, Bratislava, Slovakia
[6] Suan Dusit Univ, Dept Math, Bangkok, Thailand
基金
中国国家自然科学基金;
关键词
Hermite-Hadamard inequality; Simpson's inequality; Ostrowski's inequality; fractional calculus; (g; h)-convex functions;
D O I
10.1216/rmj.2023.53.611
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the convexity with respect to a pair of functions and establish a Hermite-Hadamard type inequality for Riemann-Liouville fractional integrals. Moreover, we derive some new Simpson's and Ostrowski's type inequalities for differentiable convex mapping with respect to a pair of functions. We also show that the newly established inequalities are the extension of some existing inequalities. Finally, we consider some mathematical examples and graphs to show the validity of the newly established inequalities.
引用
收藏
页码:611 / 628
页数:18
相关论文
共 32 条
  • [11] Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals
    Iscan, Imdat
    Wu, Shanhe
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 238 : 237 - 244
  • [12] Weighted Midpoint Hermite-Hadamard-Fejer Type Inequalities in Fractional Calculus for Harmonically Convex Functions
    Kalsoom, Humaira
    Vivas-Cortez, Miguel
    Amer Latif, Muhammad
    Ahmad, Hijaz
    [J]. FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [13] Generalized trapezoidal type integral inequalities and their applications
    Kashuri, Artion
    Liko, Rozana
    [J]. JOURNAL OF ANALYSIS, 2020, 28 (04) : 1023 - 1043
  • [14] Hermite-Hadamard type inequalities for conformable fractional integrals
    Khan, M. Adil
    Ali, T.
    Dragomir, S. S.
    Sarikaya, M. Z.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) : 1033 - 1048
  • [15] Hermite-Hadamard type inequalities for fractional integrals via Green's function
    Khan, Muhammad Adil
    Iqbal, Arshad
    Suleman, Muhammad
    Chu, Yu-Ming
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [16] Kilbas A. A., 2006, N HOLLAND MATH STUDI, V204, DOI DOI 10.1016/S0304-0208(06)80001-0
  • [17] Some Simpson's Riemann-Liouville Fractional Integral Inequalities with Applications to Special Functions
    Nasir, Jamshed
    Qaisar, Shahid
    Butt, Saad Ihsan
    Khan, Khuram Ali
    Mabela, Rostin Matendo
    [J]. JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [18] Peng C, 2017, ITAL J PURE APPL MAT, P345
  • [19] Inequalities by Means of Generalized Proportional Fractional Integral Operators with Respect to Another Function
    Rashid, Saima
    Jarad, Fahd
    Noor, Muhammad Aslam
    Kalsoom, Humaira
    Chu, Yu-Ming
    [J]. MATHEMATICS, 2019, 7 (12)
  • [20] A Convexity Concept with Respect to a Pair of Functions
    Samet, Bessem
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2022, 43 (05) : 522 - 540