FRACTIONAL HERMITE-HADAMARD INEQUALITY, SIMPSON'S AND OSTROWSKI'S TYPE INEQUALITIES FOR CONVEX FUNCTIONS WITH RESPECT TO A PAIR OF FUNCTIONS

被引:0
作者
Xie, Jianqiang [1 ]
Ali, Muhammad Aamir [2 ]
Budak, Huseyin [3 ]
Feckan, Michal [4 ,5 ]
Sitthiwirattham, Thanin [6 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing, Peoples R China
[3] Duzce Univ, Dept Math, Duzce, Turkiye
[4] Comenius Univ, Dept Math Anal & Numer Math, Bratislava, Slovakia
[5] Slovak Acad Sci, Math Inst, Bratislava, Slovakia
[6] Suan Dusit Univ, Dept Math, Bangkok, Thailand
基金
中国国家自然科学基金;
关键词
Hermite-Hadamard inequality; Simpson's inequality; Ostrowski's inequality; fractional calculus; (g; h)-convex functions;
D O I
10.1216/rmj.2023.53.611
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the convexity with respect to a pair of functions and establish a Hermite-Hadamard type inequality for Riemann-Liouville fractional integrals. Moreover, we derive some new Simpson's and Ostrowski's type inequalities for differentiable convex mapping with respect to a pair of functions. We also show that the newly established inequalities are the extension of some existing inequalities. Finally, we consider some mathematical examples and graphs to show the validity of the newly established inequalities.
引用
收藏
页码:611 / 628
页数:18
相关论文
共 32 条
  • [1] Alomari M.W., 2013, J MATH APPL, V36, P5
  • [2] Some New Refinements of Hermite-Hadamard-Type Inequalities Involving ψk-Riemann-Liouville Fractional Integrals and Applications
    Awan, Muhammad Uzair
    Talib, Sadia
    Chu Yu-Ming
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [3] On parameterized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integrals
    Budak, Huseyin
    Hezenci, Fatih
    Kara, Hasan
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (17) : 12522 - 12536
  • [4] Some New Inequalities of Simpson's Type for s-convex Functions via Fractional Integrals
    Chen, Jianhua
    Huang, Xianjiu
    [J]. FILOMAT, 2017, 31 (15) : 4989 - 4997
  • [5] Dragomir S., 1999, TAMKANG J MATH, V30, P53, DOI DOI 10.5556/J.TKJM.30.1999.4207
  • [6] Dragomir S.S., 2001, KRAGUJEV J MATH, V23, P25
  • [7] Dragomir S. S., 2000, KRAGUJEVAC J MATH, V22, P13
  • [8] Dragomir SS, 2001, MATH INEQUAL APPL, V4, P59
  • [9] On Simpson's inequality and applications
    Dragomir, SS
    Agarwal, RP
    Cerone, P
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2000, 5 (06) : 533 - 579
  • [10] Gorenflo R., 1997, FRACTALS FRACTIONAL, V378, P223