Interactive Panoramic Ray Tracing for Mixed 360° RGBD Videos

被引:0
作者
Wu, Jian [1 ]
Wang, Lili [1 ,2 ]
Ke, Wei [3 ]
机构
[1] Beihang Univ, State Key Lab Virtual Real Technol & Syst, Beijing, Peoples R China
[2] Peng Cheng Lab, Shenzhen, Peoples R China
[3] Macao Polytech Univ, Macau, Peoples R China
来源
2023 IEEE CONFERENCE ON VIRTUAL REALITY AND 3D USER INTERFACES ABSTRACTS AND WORKSHOPS, VRW | 2023年
基金
中国国家自然科学基金;
关键词
Mixed reality; 360 degrees RGBD video; Real-time rendering; Panoramic ray tracing;
D O I
10.1109/VRW58643.2023.00231
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces an interactive panoramic ray tracing method for rendering real-time photo-realistic illumination and shadow effects when inserting virtual objects into 360 degrees RGBD videos. First, we approximate the geometry of a real scene with a panoramic depth buffer and a screen space depth buffer. Then, a sparse sampling ray generation method is proposed to accelerate the tracing process by reducing the number of rays that need to be emitted in ray tracing. After this, an irradiance estimation pass is introduced to generate a noisy Monte-Carlo image. At Last, the final result is smoothed by interpolation, spatial-temporal filtering, and differential rendering. We tested our method in some natural and synthetic scenes and compared the results of our approach with the ground truth and that of the Image-Based Lighting method. The results show that our method can generate visually photo -realistic frames for virtual objects in 360 degrees RGBD videos in real-time, making the rendering results more natural and credible.
引用
收藏
页码:777 / 778
页数:2
相关论文
共 7 条
[1]  
Debevec P, 2008, ACM siggraph 2008 classes, P1, DOI DOI 10.1145/1401132.1401175
[2]  
Kopf J, 2007, ACM T GRAPHIC, V26, DOI [10.1145/1276377.1276497, 10.1145/1239451.1239547]
[3]  
McGuire Morgan, 2014, Journal of Computer Graphics Techniques (JCGT), V3, P73
[4]  
Mehta S. U., 2015, P EGSR EII, P107
[5]   360MonoDepth: High-Resolution 360° Monocular Depth Estimation [J].
Rey-Area, Manuel ;
Yuan, Mingze ;
Richardt, Christian .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :3752-3762
[6]  
Schierup CU, 2017, STUD CRIT SOC SCI, V97, P1, DOI 10.1163/9789004329706_002
[7]   Temporally Reliable Motion Vectors for Real-time Ray Tracing [J].
Zeng, Zheng ;
Liu, Shiqiu ;
Yang, Jinglei ;
Wang, Lu ;
Yan, Ling-Qi .
COMPUTER GRAPHICS FORUM, 2021, 40 (02) :79-90