Generalized Upper Bounds Estimation of Numerical Radius and Norm for the Sum of Operators

被引:2
|
作者
Gao, Muqile [1 ]
Wu, Deyu [1 ]
Chen, Alatancang [2 ]
机构
[1] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China
[2] Inner Mongolia Normal Univ, Hohhot 010022, Peoples R China
基金
中国国家自然科学基金;
关键词
Numerical radius; usual operator norm; sum of operators; extension Buzano inequality; Young inequality; INEQUALITIES;
D O I
10.1007/s00009-023-02405-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give some generalized upper bounds for the numerical radius and usual operator norm of the sum of two Hilbert space operators. These inequalities are mainly based on the extension Buzano inequality and the generalized Young inequality. And our bounds refine and generalize the existing related upper bounds.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Generalized Upper Bounds Estimation of Numerical Radius and Norm for the Sum of Operators
    Muqile Gao
    Deyu Wu
    Alatancang Chen
    Mediterranean Journal of Mathematics, 2023, 20
  • [2] Norm and numerical radius inequalities for sum of operators
    Vakili, Ali Zand
    Farokhinia, Ali
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2021, 14 (04): : 647 - 657
  • [3] Norm and numerical radius inequalities for sum of operators
    Ali Zand Vakili
    Ali Farokhinia
    Bollettino dell'Unione Matematica Italiana, 2021, 14 : 647 - 657
  • [4] New upper bounds for the numerical radius of operators on Hilbert spaces
    Sahoo, Satyajit
    Rout, Nirmal Chandra
    ADVANCES IN OPERATOR THEORY, 2022, 7 (04)
  • [5] Upper Bounds of a Generalized Numerical Radius
    Sharifeh Rezagholi
    Mahya Hosseini
    Siamak Firouzian
    Kamal Fallahi
    Iranian Journal of Science, 2023, 47 : 961 - 967
  • [6] Upper Bounds for the Numerical Radius of Hilbert Space Operators
    Jaafari, Elahe
    Asgari, Mohammad Sadegh
    Hosseini, Mohsen Shah
    Moosavi, Baharak
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2024, 48 (02) : 237 - 245
  • [7] Upper bounds for the numerical radius of Hilbert space operators
    Mansoori, Akram
    Omidvar, Mohsen Erfanian
    Shebrawi, Khalid
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (03) : 1473 - 1481
  • [9] New upper bounds for the numerical radius of operators on Hilbert spaces
    Satyajit Sahoo
    Nirmal Chandra Rout
    Advances in Operator Theory, 2022, 7
  • [10] New norm and numerical radius bounds
    Sababheh, Mohammad
    Moradi, Hamid Reza
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2025, 36 (01)