A viscoelastic Timoshenko Beam Model: Regularity and Numerical Approximation

被引:5
作者
Li, Yiqun [1 ]
Wang, Hong [1 ]
Zheng, Xiangcheng [2 ]
机构
[1] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Fractional Timoshenko beam model; Viscoelasticity; Regularity; Finite element approximation; Error estimate; FINITE-ELEMENT METHODS; EVOLUTION EQUATION; INTEGRODIFFERENTIAL EQUATIONS; EXPONENTIAL STABILITY; POWER-LAW; SYSTEM;
D O I
10.1007/s10915-023-02187-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive a fully-discrete finite element scheme to a fractional Timoshenko beam model, which characterizes the mechanical responses of viscoelastic beams, thick beams and beams subject to high-frequency excitations by properly considering the effects of both transverse shear and rotational inertia. We prove high-order regularity of the solutions to the model and then accordingly prove error estimates of the numerical scheme. Numerical experiments are performed to substantiate the numerical analysis results and to demonstrate the effectiveness of the fractional Timoshenko beam model in modeling the mechanical vibrations of different beams, in comparison with its integer-order analogue and the widely-used integer-order and fractional Euler-Bernoulli beam models.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Viscoelastic Timoshenko Beams with Occasionally Constant Relaxation Functions
    Nasser-eddine Tatar
    Applied Mathematics & Optimization, 2012, 66 : 123 - 145
  • [42] Stability Result for a New Viscoelastic–Thermoelastic Timoshenko System
    Cyril Dennis Enyi
    Baowei Feng
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 1837 - 1866
  • [43] Spectral analysis of Timoshenko beam with time delay in interior damping
    Wang, Xiaorui
    Han, Zhongjie
    Xu, Genqi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (02):
  • [45] Numerical analysis of a viscoelastic mixture problem
    Copetti, M. I. M.
    Fernandez, J. R.
    Masid, M.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2016, 80 : 393 - 404
  • [46] Mathematical analysis and numerical approximation of a general linearized poro-hyperelastic model
    Barnafi, Nicolas
    Zunino, Paolo
    Dede, Luca
    Quarteroni, Alfio
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 91 : 202 - 228
  • [47] Finite element approximation for the viscoelastic fluid motion problem
    He, YN
    Lin, YP
    Shen, SSP
    Sun, WW
    Tait, R
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 155 (02) : 201 - 222
  • [48] ON MODELING AND UNIFORM STABILITY OF A PARTIALLY DISSIPATIVE VISCOELASTIC TIMOSHENKO SYSTEM
    Alves, Michele O.
    Gomes Tavares, Eduardo H.
    Jorge Silva, Marcio A.
    Rodrigues, Jose H.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (06) : 4520 - 4543
  • [49] Stability Result for a New Viscoelastic-Thermoelastic Timoshenko System
    Enyi, Cyril Dennis
    Feng, Baowei
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (04) : 1837 - 1866
  • [50] The exponential stability region of Timoshenko beam with interior delays and boundary damping
    Xu, Genqi
    Feng, Xiaoyu
    Kwok, Ki Lung
    INTERNATIONAL JOURNAL OF CONTROL, 2017, 90 (08) : 1529 - 1542