Efficient removal of Cr(VI) and As(V) from an aquatic system using iron oxide supported typha biochar

被引:24
|
作者
Cai, Yajun [1 ,2 ]
Ran, Zhonglyu [1 ]
Cang, Yan [1 ]
Chen, Xu [1 ]
Shaaban, Muhammad [3 ]
Peng, Qi-An [1 ,2 ]
机构
[1] Wuhan Textile Univ, Coll Environm Engn, Wuhan 430200, Peoples R China
[2] Minist Educ, Clean Prod TextilePrinting & Dyeing Engn Res Ctr, Wuhan 430200, Peoples R China
[3] Bahauddin Zakariya Univ, Dept Soil Sci, Multan, Pakistan
关键词
Modified biochar; Magnetic iron oxide; Chromium; Arsenic; Removal mechanism; HEAVY-METALS; AQUEOUS-SOLUTION; ADSORPTION; ARSENATE; NANOPARTICLES; FABRICATION; ADSORBENTS; SORPTION; SURFACE; IONS;
D O I
10.1016/j.envres.2023.115588
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The removal of Cr(VI) and As(V) from aqueous solutions has been a worldwide concern. In this study, Typha biochar (FBC) with magnetic iron oxide was prepared by impregnating Typha with FeCl3 and performing py-rolysis, and the possible mechanism of Cr(VI) and As(V) removal was investigated by combining characterization means and adsorption experiments. The results showed that the modified Typha biochar is rich in pores and has the potential to eliminate Cr and As through processes such as exchange and reduction. The single molecule uptake capacities of FBC for Cr(VI) and As(V) were 32.82 and 21.56 mg g-1, respectively. The adsorption process is spontaneous heat absorption, and the adsorption results are also consistent with the proposed secondary ki-netic model. FBC still had >60% removal efficiency in the second and third reuse of Cr(VI), indicating its good recyclability. Therefore, this study confirms that FBC can effectively remove both Cr(VI) and As(V).
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Raspberry stalks-derived biochar, magnetic biochar and urea modified magnetic biochar-Synthesis, characterization and application for As(V) and Cr(VI) removal from river water
    Dobrzynska, Joanna
    Wysokinska, Anna
    Olchowski, Rafal
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 316
  • [32] Efficient Removal of Cr(VI) from Wastewater by Magnetic Biochar Derived from Peanut Hull
    Yuze Liu
    Yinxiu Liang
    Wenjie Cui
    Hongyan Zhai
    Min Ji
    Water, Air, & Soil Pollution, 2024, 235
  • [33] Modified Thorium Oxide Polyaniline Core-Shell Nanocomposite and Its Application for the Efficient Removal of Cr(VI)
    Sahu, Sumanta
    Sahu, Uttam Kumar
    Patel, Raj Kishore
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2019, 64 (03) : 1294 - 1304
  • [34] Polyethylene glycol-stabilized nano zero-valent iron supported by biochar for highly efficient removal of Cr(VI)
    Wu, Huihui
    Wei, Wenxia
    Xu, Congbin
    Meng, Yue
    Bai, Wenrong
    Yang, Wenjie
    Lin, Aijun
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2020, 188
  • [35] Nano iron oxide impregnated in chitosan bead as a highly efficient sorbent for Cr(VI) removal from water
    Lu, Jianbo
    Xu, Kai
    Yang, Jinmei
    Hao, Yarong
    Cheng, Fang
    CARBOHYDRATE POLYMERS, 2017, 173 : 28 - 36
  • [36] Removal of Cr(VI) from aqueous media using magnetic Co-reduced graphene oxide
    Malinga, Nduduzo Nkanyiso
    Jarvis, Alan Lawrence Leigh
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2020, 37 (11) : 1915 - 1925
  • [37] Cr(VI) Removal from Water with Amorphous Graphite Concentrate Contaminated by Iron
    Yang, Lang
    Yang, Qiang
    Jia, Feifei
    Song, Shaoxian
    MINERAL PROCESSING AND EXTRACTIVE METALLURGY REVIEW, 2017, 38 (06): : 411 - 416
  • [38] Mechanism enhanced active biochar support magnetic nano zero-valent iron for efficient removal of Cr(VI) from simulated polluted water
    Ji, Wenwen
    Liang, Yuan
    Ma, Hui
    Pu, Shengyan
    Sahu, Uttam Kumar
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (02):
  • [39] Removal of chromium (VI) from water using nanoscale zerovalent iron particles supported on herb-residue biochar
    Shang, Jingge
    Zong, Mingzhu
    Yu, Ying
    Kong, Xiangrui
    Du, Qiong
    Liao, Qianjiahua
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2017, 197 : 331 - 337
  • [40] Removal of As(V) using iron oxide impregnated carbon prepared from Tamarind hull
    Maiti, Abhijit
    Agarwal, Vaibhav
    De, Sirshendu
    Basu, Jayanta K.
    JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART A-TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING, 2010, 45 (10): : 1203 - 1212