scDR: Predicting Drug Response at Single-Cell Resolution

被引:6
作者
Lei, Wanyue [1 ]
Yuan, Mengqin [1 ]
Long, Min [1 ]
Zhang, Tao [1 ]
Huang, Yu-e [1 ]
Liu, Haizhou [2 ]
Jiang, Wei [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Biomed Engn, Nanjing 211106, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Automat, Nanjing 211106, Peoples R China
基金
中国国家自然科学基金;
关键词
drug resistance; drug response; cancer; heterogeneity; scRNA-seq; CANCER; SENSITIVITY; RESOURCE; RAN;
D O I
10.3390/genes14020268
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Heterogeneity exists inter- and intratumorally, which might lead to different drug responses. Therefore, it is extremely important to clarify the drug response at single-cell resolution. Here, we propose a precise single-cell drug response (scDR) prediction method for single-cell RNA sequencing (scRNA-seq) data. We calculated a drug-response score (DRS) for each cell by integrating drug-response genes (DRGs) and gene expression in scRNA-seq data. Then, scDR was validated through internal and external transcriptomics data from bulk RNA-seq and scRNA-seq of cell lines or patient tissues. In addition, scDR could be used to predict prognoses for BLCA, PAAD, and STAD tumor samples. Next, comparison with the existing method using 53,502 cells from 198 cancer cell lines showed the higher accuracy of scDR. Finally, we identified an intrinsic resistant cell subgroup in melanoma, and explored the possible mechanisms, such as cell cycle activation, by applying scDR to time series scRNA-seq data of dabrafenib treatment. Altogether, scDR was a credible method for drug response prediction at single-cell resolution, and helpful in drug resistant mechanism exploration.
引用
收藏
页数:15
相关论文
共 41 条
[11]   A biologic risk model for stage I lung cancer: Immunohistochemical analysis of 408 patients with the use of ten molecular markers [J].
D'Amico, TA ;
Massey, M ;
Herndon, JE ;
Moore, MB ;
Harpole, DH .
JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 1999, 117 (04) :736-742
[12]   Identifying tumor cells at the single-cell level using machine learning [J].
Dohmen, Jan ;
Baranovskii, Artem ;
Ronen, Jonathan ;
Uyar, Bora ;
Franke, Vedran ;
Akalin, Altuna .
GENOME BIOLOGY, 2022, 23 (01)
[13]   RAS oncogenic activity predicts response to chemotherapy and outcome in lung adenocarcinoma [J].
East, Philip ;
Kelly, Gavin P. ;
Biswas, Dhruva ;
Marani, Michaela ;
Hancock, David C. ;
Creasy, Todd ;
Sachsenmeier, Kris ;
Swanton, Charles ;
Downward, Julian ;
Trecesson, Sophie de Carne .
NATURE COMMUNICATIONS, 2022, 13 (01)
[14]   Beyondcell: targeting cancer therapeutic heterogeneity in single-cell RNA-seq data [J].
Fustero-Torre, Coral ;
Jimenez-Santos, Maria Jose ;
Garcia-Martin, Santiago ;
Carretero-Puche, Carlos ;
Garcia-Jimeno, Luis ;
Ivanchuk, Vadym ;
Di Domenico, Tomas ;
Gomez-Lopez, Gonzalo ;
Al-Shahrour, Fatima .
GENOME MEDICINE, 2021, 13 (01)
[15]   PDIA3P1 promotes Temozolomide resistance in glioblastoma by inhibiting C/EBPβ degradation to facilitate proneural-to-mesenchymal transition [J].
Gao, Zijie ;
Xu, Jianye ;
Fan, Yang ;
Qi, Yanhua ;
Wang, Shaobo ;
Zhao, Shulin ;
Guo, Xing ;
Xue, Hao ;
Deng, Lin ;
Zhao, Rongrong ;
Sun, Chong ;
Zhang, Ping ;
Li, Gang .
JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH, 2022, 41 (01)
[16]   Systematic identification of genomic markers of drug sensitivity in cancer cells [J].
Garnett, Mathew J. ;
Edelman, Elena J. ;
Heidorn, Sonja J. ;
Greenman, Chris D. ;
Dastur, Anahita ;
Lau, King Wai ;
Greninger, Patricia ;
Thompson, I. Richard ;
Luo, Xi ;
Soares, Jorge ;
Liu, Qingsong ;
Iorio, Francesco ;
Surdez, Didier ;
Chen, Li ;
Milano, Randy J. ;
Bignell, Graham R. ;
Tam, Ah T. ;
Davies, Helen ;
Stevenson, Jesse A. ;
Barthorpe, Syd ;
Lutz, Stephen R. ;
Kogera, Fiona ;
Lawrence, Karl ;
McLaren-Douglas, Anne ;
Mitropoulos, Xeni ;
Mironenko, Tatiana ;
Thi, Helen ;
Richardson, Laura ;
Zhou, Wenjun ;
Jewitt, Frances ;
Zhang, Tinghu ;
O'Brien, Patrick ;
Boisvert, Jessica L. ;
Price, Stacey ;
Hur, Wooyoung ;
Yang, Wanjuan ;
Deng, Xianming ;
Butler, Adam ;
Choi, Hwan Geun ;
Chang, JaeWon ;
Baselga, Jose ;
Stamenkovic, Ivan ;
Engelman, Jeffrey A. ;
Sharma, Sreenath V. ;
Delattre, Olivier ;
Saez-Rodriguez, Julio ;
Gray, Nathanael S. ;
Settleman, Jeffrey ;
Futreal, P. Andrew ;
Haber, Daniel A. .
NATURE, 2012, 483 (7391) :570-U87
[17]  
Gene Ontology Consortium, 2015, Nucleic Acids Res., V43, pD1049
[18]   GSVA: gene set variation analysis for microarray and RNA-Seq data [J].
Haenzelmann, Sonja ;
Castelo, Robert ;
Guinney, Justin .
BMC BIOINFORMATICS, 2013, 14
[19]   KEGG: new perspectives on genomes, pathways, diseases and drugs [J].
Kanehisa, Minoru ;
Furumichi, Miho ;
Tanabe, Mao ;
Sato, Yoko ;
Morishima, Kanae .
NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) :D353-D361
[20]   Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity [J].
Kinker, Gabriela S. ;
Greenwald, Alissa C. ;
Tal, Rotem ;
Orlova, Zhanna ;
Cuoco, Michael S. ;
McFarland, James M. ;
Warren, Allison ;
Rodman, Christopher ;
Roth, Jennifer A. ;
Bender, Samantha A. ;
Kumar, Bhavna ;
Rocco, James W. ;
Fernandes, Pedro A. C. M. ;
Mader, Christopher C. ;
Keren-Shaul, Hadas ;
Plotnikov, Alexander ;
Barr, Haim ;
Tsherniak, Aviad ;
Rozenblatt-Rosen, Orit ;
Krizhanovsky, Valery ;
Puram, Sidharth V. ;
Regev, Aviv ;
Tirosh, Itay .
NATURE GENETICS, 2020, 52 (11) :1208-+