Existence and bifurcation of positive solutions for fractional p$$ p $$-Kirchhoff problems

被引:3
作者
Wang, Linlin [1 ]
Xing, Yuming [1 ]
Zhang, Binlin [2 ]
机构
[1] Harbin Inst Technol, Sch Math, Harbin, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional Kirchhoff equation; global bifurcation; nonlinear eigenvalue problem; topological degree; GLOBAL BIFURCATION; MULTIPLICITY; EIGENVALUES; LAPLACIAN; EQUATIONS;
D O I
10.1002/mma.8652
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are interested in the existence and bifurcation of positive solutions for Kirchhoff-type eigenvalue problems involving the fractional p$$ p $$-Laplacian. First, we investigate the properties of the first eigenvalue for fractional p$$ p $$-Laplacian equations with weighted functions. Furthermore, by using fixed-point argument and modified global bifurcation theorem of Rabinowitz, together with topological degree theory, we obtain the existence of unbounded continuum of positive weak solutions to Kirchhoff-type equations with subcritical and critical nonlinearities, where the bifurcation emanates from (0,0)$$ \left(0,0\right) $$. It is worth mentioning that our main results fill in some gaps of the available results.
引用
收藏
页码:2413 / 2432
页数:20
相关论文
共 34 条
[1]   POSITIVE SOLUTIONS OF ASYMPTOTICALLY LINEAR ELLIPTIC EIGENVALUE PROBLEMS [J].
AMBROSETTI, A ;
HESS, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1980, 73 (02) :411-422
[2]  
Ambrosetti A., 1995, PRIMER NONLINEAR ANA
[3]  
[Anonymous], 2010, Mathematical Surveys and Monographs
[4]  
[Anonymous], 1971, J. Funct. Anal., DOI [10.1016/0022-1236(71)90030-9, DOI 10.1016/0022-1236(71)90030-9]
[5]  
Aubin Thierry, 1998, Springer Monographs in Mathematics
[6]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[7]   STABILITY OF VARIATIONAL EIGENVALUES FOR THE FRACTIONAL p-LAPLACIAN [J].
Brasco, Lorenzo ;
Parini, Enea ;
Squassina, Marco .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (04) :1813-1845
[8]   CONVEXITY PROPERTIES OF DIRICHLET INTEGRALS AND PICONE-TYPE INEQUALITIES [J].
Brasco, Lorenzo ;
Franzina, Giovanni .
KODAI MATHEMATICAL JOURNAL, 2014, 37 (03) :769-799
[9]   A note on positive eigenfunctions and hidden convexity [J].
Brasco, Lorenzo ;
Franzina, Giovanni .
ARCHIV DER MATHEMATIK, 2012, 99 (04) :367-374
[10]   Global bifurcation and positive solution for a class of fully nonlinear problems [J].
Dai, Guowei ;
Wang, Haiyan ;
Yang, Bianxia .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 69 (08) :771-776