Multi-Scale Acoustic Velocity Inversion Based on a Convolutional Neural Network

被引:0
作者
Li, Wenda [1 ,2 ,3 ]
Wu, Tianqi [1 ,4 ]
Liu, Hong [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Geol & Geophys, Beijing 100029, Peoples R China
[2] Chinese Acad Sci, Innovat Acad Earth Sci, Beijing 100029, Peoples R China
[3] Univ Chinese Acad Sci, Natl Engn Lab Offshore Oil Explorat, Beijing 100049, Peoples R China
[4] China Univ Geosci, Sch Geophys & Informat Technol, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
seismic data; deep learning; full-waveform inversion; CNN; multi-scale; WAVE-FORM INVERSION; COMPONENTS; MIGRATION;
D O I
10.3390/rs16050772
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The full waveform inversion at this stage still has many problems in the recovery of deep background velocities. Velocity modeling based on end-to-end deep learning usually lacks a generalization capability. The proposed method is a multi-scale convolutional neural network velocity inversion (Ms-CNNVI) that incorporates a multi-scale strategy into the CNN-based velocity inversion algorithm for the first time. This approach improves the accuracy of the inversion by integrating a multi-scale strategy from low-frequency to high-frequency inversion and by incorporating a smoothing strategy in the multi-scale (MS) convolutional neural network (CNN) inversion process. Furthermore, using angle-domain reverse time migration (RTM) for dataset construction in Ms-CNNVI significantly improves the inversion efficiency. Numerical tests showcase the efficacy of the suggested approach.
引用
收藏
页数:22
相关论文
共 38 条
[1]   MULTISCALE SEISMIC WAVE-FORM INVERSION [J].
BUNKS, C ;
SALECK, FM ;
ZALESKI, S ;
CHAVENT, G .
GEOPHYSICS, 1995, 60 (05) :1457-1473
[2]  
Choi Y, 2011, GEOPHYSICS, V76, pR125, DOI [10.1190/GEO2010-0210.1, 10.1190/geo2010-0210.1]
[3]   Multiscale phase inversion of seismic data [J].
Fu, Lei ;
Guo, Bowen ;
Schuster, Gerard T. .
GEOPHYSICS, 2018, 83 (02) :R159-R171
[4]   Multi-source multi-scale source-independent full waveform inversion [J].
Guo, Yundong ;
Huang, Jianping ;
Cui, Chao ;
Li, Zhenchun ;
Fu, Liyun ;
Li, Qingyang .
JOURNAL OF GEOPHYSICS AND ENGINEERING, 2019, 16 (03) :479-492
[5]   WAVE-FIELD TRANSFORMATIONS OF VERTICAL SEISMIC PROFILES [J].
HU, LZ ;
MCMECHAN, GA .
GEOPHYSICS, 1987, 52 (03) :307-321
[6]  
LAILLY P., 1983, C INVERSE SCATTERING, P206
[7]   A High-Resolution Velocity Inversion Method Based on Attention Convolutional Neural Network [J].
Li, Wenda ;
Liu, Hong ;
Wu, Tianqi ;
Huo, Shoudong .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[8]   Structure-Preserving Random Noise Attenuation Method for Seismic Data Based on a Flexible Attention CNN [J].
Li, Wenda ;
Wu, Tianqi ;
Liu, Hong .
REMOTE SENSING, 2022, 14 (20)
[9]   Research progress on seismic imaging technology [J].
Li, Zhen-Chun ;
Qu, Ying-Ming .
PETROLEUM SCIENCE, 2022, 19 (01) :128-146
[10]   Enhancing low-wavenumber components of full-waveform inversion using an improved wavefield decomposition method in the time-space domain [J].
Lian, Shijie ;
Yuan, Sanyi ;
Wang, Guanchao ;
Liu, Tian ;
Liu, Ying ;
Wang, Shangxu .
JOURNAL OF APPLIED GEOPHYSICS, 2018, 157 :10-22