Some density results by deep Kantorovich type neural network operators

被引:6
|
作者
Sharma, Manju [1 ]
Singh, Uaday [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttarakhand, India
关键词
Neural networks; Deep neural network operators; Approximation; Density results; APPROXIMATION; CONVERGENCE;
D O I
10.1016/j.jmaa.2023.128009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove density results by using deep Kantorovich type neural network operators. Firstly, we define a two layer neural network operator and prove the density results in the spaces C(I) and Lp(I) for p >= 1, where I := [-1, 1]. Then we extend it to a multi-layer neural network operator and prove the corresponding density results. Our study provides a generalizations of the well known single layer Kantorovich type neural network operator in terms of its deeper version.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Variation diminishing-type properties for multivariate sampling Kantorovich operators
    Angeloni, Laura
    Costarelli, Danilo
    Seracini, Marco
    Vinti, Gianluca
    Zampogni, Luca
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2020, 13 (04): : 595 - 605
  • [23] On New Classes of Stancu-Kantorovich-Type Operators
    Vasian, Bianca Ioana
    Garoiu, Stefan Lucian
    Pacurar, Cristina Maria
    MATHEMATICS, 2021, 9 (11)
  • [24] Approximation by a Kantorovich Variant of Szasz Operators Based on Brenke-Type Polynomials
    Oksuzer, Ozlem
    Karsli, Harun
    Tasdelen, Fatma
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) : 3327 - 3340
  • [25] A Kantorovich Type Integral Modification of q- Bernstein-Schurer Operators
    Gairola, Asha Ram
    Mishra, Vishnu Narayan
    Singh, Karunesh Kumar
    FILOMAT, 2018, 32 (04) : 1335 - 1348
  • [26] Convergence Results for Nonlinear Sampling Kantorovich Operators in Modular Spaces
    Costarelli, Danilo
    Natale, Mariarosaria
    Vinti, Gianluca
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2023, 44 (12) : 1276 - 1299
  • [27] Bézier Type Kantorovich q-Baskakov Operators via Wavelets and Some Approximation Properties
    Ekrem Savaş
    Mohammad Mursaleen
    Bulletin of the Iranian Mathematical Society, 2023, 49
  • [28] Convergence analysis of modified Bernstein-Kantorovich type operators
    Senapati, Abhishek
    Kumar, Ajay
    Som, Tanmoy
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (07) : 3749 - 3764
  • [29] Kantorovich-Stancu type Lototsky-Chlodowsky operators
    Serin, S. Kutlu
    Karsli, H.
    Yesildal, F. Tasdelen
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2024, 16 (02) : 512 - 522
  • [30] Lupas-Kantorovich Type Operators for Functions of Two Variables
    Agrawal, P. N.
    Kumar, Abhishek
    MATHEMATICAL ANALYSIS I: APPROXIMATION THEORY, ICRAPAM 2018, 2020, 306 : 17 - 36