Neural networks;
Deep neural network operators;
Approximation;
Density results;
APPROXIMATION;
CONVERGENCE;
D O I:
10.1016/j.jmaa.2023.128009
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we prove density results by using deep Kantorovich type neural network operators. Firstly, we define a two layer neural network operator and prove the density results in the spaces C(I) and Lp(I) for p >= 1, where I := [-1, 1]. Then we extend it to a multi-layer neural network operator and prove the corresponding density results. Our study provides a generalizations of the well known single layer Kantorovich type neural network operator in terms of its deeper version.(c) 2023 Elsevier Inc. All rights reserved.
机构:
Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R ChinaHangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
Xiang, Chenghao
Zhao, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R ChinaHangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
Zhao, Yi
Wang, Xu
论文数: 0引用数: 0
h-index: 0
机构:
Wilfrid Laurier Univ, Dept Math & Stat, Waterloo, ON N2L 3C5, CanadaHangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
Wang, Xu
Ye, Peixin
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Math, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaHangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China