Predicting 30-day mortality in intensive care unit patients with ischaemic stroke or intracerebral haemorrhage

被引:3
|
作者
van Valburg, Marielle K. [1 ,2 ,18 ]
Termorshuizen, Fabian [3 ,4 ]
Geerts, Bart F. [5 ]
Abdo, Wilson F. [6 ]
van den Bergh, Walter M.
Brinkman, Sylvia [3 ,4 ]
Horn, Janneke [8 ]
van Mook, Walther N. K. A. [7 ,9 ,10 ,11 ]
Slooter, Arjen J. C. [1 ,12 ,13 ,14 ]
Wermer, Marieke J. H. [15 ]
Siegerink, Bob [16 ]
Arbous, M. Sesmu [3 ,16 ,17 ]
机构
[1] Univ Utrecht, Univ Med Ctr Utrecht, Dept Intens Care Med, Utrecht, Netherlands
[2] Amphia Hosp, Dept Anaesthesiol Intens Care & Pain Med, Breda, Netherlands
[3] Univ Amsterdam, Natl Intens Care Evaluat Fdn, Med Ctr, Amsterdam, Netherlands
[4] Univ Amsterdam, Dept Med Informat, Med Ctr, Amsterdam, Netherlands
[5] Healthplus ai BV, Amsterdam, Netherlands
[6] Radboud Univ Nijmegen, Dept Intens Care Med, Med Ctr, Nijmegen, Netherlands
[7] Univ Groningen, Univ Med Ctr Groningen, Dept Crit Care, Groningen, Netherlands
[8] Univ Amsterdam, Dept Intens Care, Med Ctr, Amsterdam, Netherlands
[9] Maastricht Univ, Med Ctr, Dept Intens Care Med, Maastricht, Netherlands
[10] Maastricht Univ, Acad Postgrad Training, Med Ctr, Maastricht, Netherlands
[11] Maastricht Univ, Sch Hlth Profess Educ, Maastricht, Netherlands
[12] Univ Med Ctr Utrecht, UMC Utrecht Brain Ctr, Utrecht, Netherlands
[13] UZ Brussel, Dept Neurol, Brussels, Belgium
[14] Vrije Univ Brussel, Brussels, Belgium
[15] Leiden Univ, Dept Neurol, Med Ctr, Leiden, Netherlands
[16] Leiden Univ, Dept Clin Epidemiol, Med Ctr, Leiden, Netherlands
[17] Leiden Univ, Dept Intens Care, Med Ctr, Leiden, Netherlands
[18] Univ Med Ctr Utrecht, Dept Intens Care Med, POB 85500,8550Mail stop Q04 2 313, NL-3508 GA Utrecht, Netherlands
关键词
ENDOVASCULAR TREATMENT; HOSPITAL MORTALITY; PROFESSIONALS; MANAGEMENT; PROGNOSIS; DECISIONS; STATEMENT;
D O I
10.1097/EJA.0000000000001920
中图分类号
R614 [麻醉学];
学科分类号
100217 ;
摘要
BACKGROUND Stroke patients admitted to an intensive care unit (ICU) follow a particular survival pattern with a high short-term mortality, but if they survive the first 30 days, a relatively favourable subsequent survival is observed. OBJECTIVES The development and validation of two prognostic models predicting 30-day mortality for ICU patients with ischaemic stroke and for ICU patients with intracerebral haemorrhage (ICH), analysed separately, based on parameters readily available within 24 h after ICU admission, and with comparison with the existing Acute Physiology and Chronic Health Evaluation IV (APACHE-IV) model. DESIGN Observational cohort study. SETTING All 85 ICUs participating in the Dutch National Intensive Care Evaluation database. PATIENTS All adult patients with ischaemic stroke or ICH admitted to these ICUs between 2010 and 2019. MAIN OUTCOME MEASURES Models were developed using logistic regressions and compared with the existing APACHE-IV model. Predictive performance was assessed using ROC curves, calibration plots and Brier scores. RESULTS We enrolled 14 303 patients with stroke admitted to ICU: 8422 with ischaemic stroke and 5881 with ICH. Thirty-day mortality was 27% in patients with ischaemic stroke and 41% in patients with ICH. Important factors predicting 30-day mortality in both ischaemic stroke and ICH were age, lowest Glasgow Coma Scale (GCS) score in the first 24 h, acute physiological disturbance (measured using the Acute Physiology Score) and the application of mechanical ventilation. Both prognostic models showed high discrimination with an AUC 0.85 [95% confidence interval (CI), 0.84 to 0.87] for patients with ischaemic stroke and 0.85 (0.83 to 0.86) in ICH. Calibration plots and Brier scores indicated an overall good fit and good predictive performance. The APACHE-IV model predicting 30-day mortality showed similar performance with an AUC of 0.86 (95% CI, 0.85 to 0.87) in ischaemic stroke and 0.87 (0.86 to 0.89) in ICH. CONCLUSION We developed and validated two prognostic models for patients with ischaemic stroke and ICH separately with a high discrimination and good calibration to predict 30-day mortality within 24 h after ICU admission.
引用
收藏
页码:136 / 145
页数:10
相关论文
共 50 条
  • [31] Predicting mortality of patients with cirrhosis admitted to medical intensive care unit: An experience of a single tertiary center
    Elzouki, Abdel-Naser
    Sunman, Shireen
    Alhasan, Rania
    Abdullah, Ali
    Othman, Muftah
    Badi, Ahmad
    ARAB JOURNAL OF GASTROENTEROLOGY, 2016, 17 (04) : 159 - 163
  • [32] Development and validation of a risk score for predicting 30-day mortality in patients with ST elevation myocardial infarction
    Wang, Shan
    Zhang, You
    Qi, Datun
    Wang, Xianpei
    Zhu, Zhongyu
    Yang, Wei
    Li, Muwei
    Hu, Dayi
    Gao, Chuanyu
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [33] Predicting mortality in the intensive care unit: Man against machine
    Shapiro, NI
    Talmor, D
    CRITICAL CARE MEDICINE, 2006, 34 (03) : 932 - 933
  • [34] Various scoring systems for predicting mortality in Intensive Care Unit
    Evran, T.
    Serin, S.
    Gurses, E.
    Sungurtekin, H.
    NIGERIAN JOURNAL OF CLINICAL PRACTICE, 2016, 19 (04) : 530 - 534
  • [35] Regional Variation in Hospital Mortality and 30-day Mortality for Injured Medicare Patients
    Adam S. Gorra
    David E. Clark
    Richard J. Mullins
    Michael A. DeLorenzo
    World Journal of Surgery, 2008, 32 : 954 - 959
  • [36] A Nomogram for Predicting Hospital Mortality in Intensive Care Unit Patients with Acute Myocardial Infarction
    Tan, Liao
    Xu, Qian
    Shi, Ruizheng
    INTERNATIONAL JOURNAL OF GENERAL MEDICINE, 2021, 14 : 5863 - 5877
  • [37] Predicting mortality in patients admitted to the intensive care unit after open vascular surgery
    Reis, Pedro
    Lopes, Ana Isabel
    Leite, Diana
    Moreira, Joao
    Mendes, Leonor
    Ferraz, Sofia
    Amaral, Tania
    Abelha, Fernando
    SURGERY TODAY, 2019, 49 (10) : 836 - 842
  • [38] Neutrophil-to-Lymphocyte Ratio Improves the Accuracy and Sensitivity of Pneumonia Severity Index in Predicting 30-Day Mortality of CAP Patients
    Zhang, Hai F.
    Ge, Yan L.
    Wang, Hong Y.
    Zhang, Qian
    Li, Wen Q.
    Chen, Yi
    Chen, Qian C.
    Jin, Jing J.
    Xu, Jing
    Zhang, Shuang
    Xu, Tian T.
    Zhang, Xue
    Yu, Hua L.
    Zhu, Xiao Y.
    Liu, Cong H.
    Bai, Jing
    Zhang, Jia B.
    Xie, Bao Q.
    Wang, Yuan
    Fu, Ai S.
    Zhang, Pan P.
    CLINICAL LABORATORY, 2019, 65 (10) : 1867 - 1873
  • [39] Spontaneous Intracerebral Hemorrhage Factors Predicting Long-Term Mortality After Intensive Care
    Fallenius, Marika
    Skrifvars, Markus B.
    Reinikainen, Matti
    Bendel, Stepani
    Curtze, Sami
    Sibolt, Gerli
    Martinez-Majander, Nicolas
    Raj, Rahul
    STROKE, 2019, 50 (09) : 2336 - 2343
  • [40] Serum S100A12 and 30-day mortality after acute intracerebral hemorrhage
    Qian, Song-Quan
    He, Su-Rong
    Li, Bei-Bei
    Qian, Jing
    Zheng, Xu-Dong
    CLINICA CHIMICA ACTA, 2018, 477 : 1 - 6