Achieving More Insight on the Dynamic Process from Conventional/Inverted Layer-by-Layer All-Polymer Solar Cells with 17.24% or 12.41% Efficiency

被引:2
|
作者
Liu, Zhongyuan [1 ]
Zhang, Miao [2 ]
Xu, Wenjing [1 ]
Tian, Hongyue [1 ]
Jeong, Sang Young [3 ]
Woo, Han Young [3 ]
Ma, Xiaoling [1 ]
Zhang, Fujun [1 ]
机构
[1] Beijing Jiaotong Univ, Key Lab Luminescence & Opt Informat, Minist Educ, Beijing 100044, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Biol & Chem Technol, Hung Hom, Hong Kong 999077, Peoples R China
[3] Korea Univ, Coll Sci, Dept Chem, Organ Optoelect Mat Lab, Seoul 02841, South Korea
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
all-polymer solar cells; energy transfer; layer-by-layer; power conversion efficiency; STABILITY;
D O I
10.1002/solr.202300805
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Series of bulk heterojunction (BHJ) and layer-by-layer (LbL) all-polymer solar cells (APSCs) were prepared with polymer PM6 as donor and polymer PY-DT as acceptor based on conventional and inverted configuration. Benefiting from the sequential deposition strategy, the good vertical phase separation and more ordered molecular arrangement can be formed in the LbL APSCs. The conventional LbL APSCs exhibit an optimized power conversion efficiency (PCE) of 17.24% with a relatively large short circuit current density of 23.83 mA cm-2 and fill factor of 74.60%, photogenerated excitons near the indium tin oxide electrode can be efficiently utilized through energy transfer from PM6 to PY-DT and the self-absorption effect of PM6 for its long exciton diffuse distance. The 17.24% PCE of conventional LbL APSCs is higher than 16.72% of conventional BHJ APSCs, 14.59% of inverted BHJ APSCs and 12.41% of inverted LbL APSCs. The rather low PCE of 12.41% for the inverted LbL APSCs further indicates that the energy transfer from donor to acceptor and self-absorption effect of donor should play a vital role in determining the performance of LbL APSCs. This work provides more insights on the exciton and carrier dynamic process in sequentially deposited active layer, providing more guidance for preparing efficient LbL APSCs. The conventional layer-by-layer (LbL) all-polymer solar cells (APSCs) prepared with polymer PM6 as donor and polymer PY-DT as acceptor exhibit an optimized power conversion efficiency of 17.24%, resulting from the efficient charge transport and exciton utilization. The energy transfer from PM6 to PY-DT and the self-absorption effect of PM6 effectively prolong the diffusion distance of photogenerated excitons and improve exciton utilization efficiency.image (c) 2023 WILEY-VCH GmbH
引用
收藏
页数:7
相关论文
共 50 条
  • [1] 15.28% efficiency of conventional layer-by-layer all-polymer solar cells superior to bulk heterojunction or inverted cells
    Liu, Zhongyuan
    Ma, Xiaoling
    Xu, Wenjing
    Zhang, Shuping
    Xu, Chunyu
    Young Jeong, Sang
    Young Woo, Han
    Zhou, Zhengji
    Zhang, Fujun
    Chemical Engineering Journal, 2022, 450
  • [2] 15.28% efficiency of conventional layer-by-layer all-polymer solar cells superior to bulk heterojunction or inverted cells
    Liu, Zhongyuan
    Ma, Xiaoling
    Xu, Wenjing
    Zhang, Shuping
    Xu, Chunyu
    Jeong, Sang Young
    Woo, Han Young
    Zhou, Zhengji
    Zhang, Fujun
    CHEMICAL ENGINEERING JOURNAL, 2022, 450
  • [3] Achieving 15.81% and 15.29% efficiency of all-polymer solar cells based on layer-by-layer and bulk heterojunction structures
    Xu, Wenjing
    Zhu, Xixiang
    Ma, Xiaoling
    Zhou, Hang
    Li, Xiong
    Jeong, Sang Young
    Woo, Han Young
    Zhou, Zhengji
    Sun, Qianqian
    Zhang, Fujun
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (25) : 13492 - 13499
  • [4] Over 17.4% Efficiency of Layer-by-Layer All-Polymer Solar Cells by Improving Exciton Utilization in Acceptor Layer
    Xu, Wenjing
    Zhang, Miao
    Ma, Xiaoling
    Zhu, Xixiang
    Jeong, Sang Young
    Woo, Han Young
    Zhang, Jian
    Du, Wenna
    Wang, Jian
    Liu, Xinfeng
    Zhang, Fujun
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (28)
  • [5] High-Efficiency Layer-by-Layer All-Polymer Solar Cell Enabled by Bottom-Layer Optimization
    Dou, Yuejia
    Hong, Ling
    Jing, Jianhua
    Jia, Tao
    Zhang, Jiabin
    Zhang, Kai
    Huang, Fei
    SOLAR RRL, 2023, 7 (22)
  • [6] Layer-by-layer processed binary all-polymer solar cells with efficiency over 16% enabled by finely optimized morphology
    Zhang, Yue
    Wu, Baoqi
    He, Yakun
    Deng, Wanyuan
    Li, Jingwen
    Li, Junyu
    Qiao, Nan
    Xing, Yifan
    Yuan, Xiyue
    Li, Ning
    Brabec, Christoph J.
    Wu, Hongbin
    Lu, Guanghao
    Duan, Chunhui
    Huang, Fei
    Cao, Yong
    NANO ENERGY, 2022, 93
  • [7] Vertical Distribution in Inverted Nonfullerene Polymer Solar Cells by Layer-by-Layer Solution Fabrication Process
    Xie, Xiangdong
    Liao, Jianping
    Liu, Junqin
    Meng, Yilong
    Huang, Wenyin
    Zhan, Xiaozhi
    Wang, Li-Ming
    Li, Qingduan
    Zhu, Tao
    Liu, Shengjian
    Cai, Yue-Peng
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2021, 15 (11):
  • [8] Achieving 18.29% efficiency of layer-by-layer all polymer solar cells enabled by iridium complex as energy donor and crystallizing agent
    Ni, Yuheng
    Li, Jiayu
    Zhang, Miao
    Tian, Hongyue
    Zhou, Hang
    Zhang, Lu
    Xu, Wenjing
    Fu, Guorui
    Lu, Xingqiang
    Jeong, Sang Young
    Wong, Wai-Yeung
    Woo, Han Young
    Ma, Xiaoling
    Zhang, Fujun
    CHEMICAL ENGINEERING JOURNAL, 2025, 507
  • [9] Eco-friendly solvent-processed layer-by-layer ternary all-polymer solar cells exhibiting over 18.5% efficiency
    Xu, Wenjing
    Tian, Hongyue
    Ni, Yuheng
    Xu, Yujie
    Zhang, Lu
    Zhang, Fenghua
    Wu, Sijian
    Jeong, Sang Young
    Huang, Tianhuan
    Du, Xiaoyan
    Li, Xiong
    Ma, Zaifei
    Woo, Han Young
    Zhang, Jian
    Ma, Xiaoling
    Wang, Jian
    Zhang, Fujun
    CHEMICAL ENGINEERING JOURNAL, 2024, 493
  • [10] Over 18.2% efficiency of layer-by-layer all-polymer solar cells enabled by homoleptic iridium(III) carbene complex as solid additive
    Zhou, Hang
    Sun, Yingjie
    Zhang, Miao
    Ni, Yuheng
    Zhang, Fenghua
    Jeong, Sang Young
    Huang, Tianhuan
    Li, Xiong
    Woo, Han Young
    Zhang, Jian
    Wong, Wai-Yeung
    Ma, Xiaoling
    Zhang, Fujun
    SCIENCE BULLETIN, 2024, 69 (18) : 2862 - 2869