Degradation of Mechanical Properties of Graphene Oxide Concrete under Sulfate Attack and Freeze-Thaw Cycle Environment

被引:4
|
作者
Qian, Ji [1 ]
Zhou, Lin-Qiang [1 ]
Wang, Xu [1 ]
Yang, Ji-Peng [1 ]
机构
[1] Chongqing Jiaotong Univ, State Key Lab Mt Bridge & Tunnel Engn, Chongqing 400074, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
graphene oxide concrete; sulfate attack; freeze-thaw cycle; mechanical property; scanning electron microscope; CEMENT PASTE; MICROSTRUCTURE; PERFORMANCE; NANOSHEETS; STRENGTH; BEHAVIOR;
D O I
10.3390/ma16216949
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, firstly, the effects of graphene oxide on the mechanical properties of concrete were investigated. Secondly, the degradation and mechanism of the mechanical properties of graphene oxide concrete (GOC) under sulfate attack and a freeze-thaw environment were investigated. In addition, the dynamic modulus of elasticity (MOEdy) and uniaxial compressive strength (UCS) of the GOC were measured under different environmental conditions. According to the test results, the incorporation of graphene oxide in appropriate admixtures could improve the mechanical properties of concrete in these two working environments. It is worth noting that this effect is most pronounced when 0.05 wt% graphene oxide is incorporated. In the sulfate attack environment, the MOEdy and UTS of the GOC0.05% specimen at 120 cycles decreased by 22.28% and 24.23%, respectively, compared with the normal concrete specimens. In the freeze-thaw environment, the MOEdy and UTS of the GOC0.05% specimen at 90 cycles decreased by 13.96% and 7.58%, respectively, compared with the normal concrete specimens. The scanning electron microscope (SEM) analysis showed that graphene oxide could adjust the aggregation state of cement hydration products and its own reaction with some cement hydration crystals to form strong covalent bonds, thereby improving and enhancing the microstructure density.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Damage and Degradation of Concrete under Coupling Action of Freeze-Thaw Cycle and Sulfate Attack
    Tian, Wei
    Gao, Fangfang
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2020, 2020
  • [2] Fracture properties of concrete under freeze-thaw cycles and sulfate attack
    Hu, Shaowei
    Yin, Yangyang
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 350
  • [3] Damage evolution law of concrete under sulfate attack and freeze-thaw cycle
    Gan, Lei
    Liu, Yuan
    Shen, Zhenzhong
    Chen, Guanyun
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51 (11): : 134 - 141
  • [4] Durability of concrete under sulfate attack exposed to freeze-thaw cycles
    Jiang, Lei
    Niu, Ditao
    Yuan, Lidong
    Fei, Qiannan
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2015, 112 : 112 - 117
  • [5] Deterioration mechanism of sulfate attack on concrete under freeze-thaw cycles
    Ditao Niu
    Lei Jiang
    Qiannan Fei
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2013, 28 : 1172 - 1176
  • [6] Deterioration Mechanism of Sulfate Attack on Concrete under Freeze-thaw Cycles
    Niu Ditao
    Jiang Lei
    Fei Qiannan
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2013, 28 (06): : 1172 - 1176
  • [7] Pore structure and mechanical properties of foam concrete under freeze-thaw environment
    Gao Z.
    Chen B.
    Chen J.
    Yuan Z.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2024, 41 (02): : 827 - 838
  • [8] Investigation on performance degradation analysis method of offshore concrete structures under freeze-thaw and sulfate attack
    Liang, Yan
    Wang, Zhixuan
    OCEAN ENGINEERING, 2025, 316
  • [9] Analysis on effects of freeze-thaw cycle on mechanical properties of concrete
    Youzhen, Wang, 1600, Journal of Chemical and Pharmaceutical Research, 3/668 Malviya Nagar, Jaipur, Rajasthan, India (06):
  • [10] Pore structure, mechanical property and permeability of concrete under sulfate attack exposed to freeze-thaw cycles
    Xue, Weipei
    Peng, Xuebiao
    Alam, M. Shahria
    Wang, Zhongjian
    Wu, Hao
    Lin, Jian
    ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, 2024, 24 (02)