Collaboratively enhancing electrochemical properties of LiNi0.83Co0.11Mn0.06O2 through doping and coating of quadrivalent elements

被引:34
作者
Yu, Zhao-Zhe [1 ,2 ]
Zhao, Gui-Quan [1 ]
Ji, Fang-Li [3 ]
Tong, Hao [1 ]
Tong, Qi-Lin [1 ]
Li, Hua-Cheng [1 ]
Cheng, Yan [1 ,2 ]
机构
[1] Guilin Univ Elect Technol, Guangxi Key Lab Mfg Syst & Adv Mfg Technol, Guilin 541004, Peoples R China
[2] Guilin Univ Elect Technol, Engn Res Ctr Elect Informat Mat & Devices, Minist Educ, Guilin 541004, Peoples R China
[3] Guangxi CNGR New Energy Sci & Technol Co Ltd, Qinzhou 535000, Peoples R China
基金
中国国家自然科学基金;
关键词
Collaborative modification strategy; Quadrivalent elements; Phase transitions; Structural degradation; Ni-rich layered oxides; LITHIUM-ION BATTERIES; CATHODE MATERIAL; LINI0.6CO0.2MN0.2O2; CATHODE; CYCLING STABILITY; STRUCTURAL STABILITY; HIGH-PERFORMANCE; OXIDE CATHODE; LINI0.8CO0.1MN0.1O2; SURFACE; TRANSITION;
D O I
10.1007/s12598-023-02356-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ni-rich layered oxides (Ni >= 80%) with high energy density have become a mainstream cathode material for Li-ion batteries. However, irreversible phase transitions and interface instability are deep-seated challenges in commercializing Ni-rich materials. This study used a collaborative modification strategy involving doping and coating with quadrivalent elements to construct Ni-rich materials. In particular, introducing tetravalent Zr makes the valence change of Ni (2+ to 4+) more accessible to complete spontaneously during the charging and discharging processes, which significantly suppresses the cationic mixing and irreversible phase transition (H2 <-> H3). Combining the strategy of constructing CeO2 coatings on the surface and interfacial spinel-like phases improves the Li+ diffusion kinetics and interfacial stability. Simultaneously, part of the strongly oxidizing four-valence Ce4+ diffuses to the surface layer, further increasing the average valence state of Ni. Therefore, LiNi0.83Co0.11Mn0.06O2 (NCM)-Zr@Ce achieves 78.5% outstanding retention at 1.0C after 200 cycles within 3.0-4.3 V compared to unmodified NCM with 41.4% retention. The improved cyclic stability can be attributed to the collaborative modification strategy of the quadrivalent elements, which provides an effective synergistic modification strategy for developing high-performance Li-ion battery cathode materials.
引用
收藏
页码:4103 / 4114
页数:12
相关论文
共 55 条
[1]   Enhancing the cycling stability of Ni-rich LiNi0.83Co0.11Mn0.06O2 cathode at 4.5 V via 2,4-difluorobiphenyl additive [J].
Ahn, Jinhyeok ;
Im, Jinsol ;
Seo, Hyewon ;
Yoon, Sukeun ;
Cho, Kuk Young .
JOURNAL OF POWER SOURCES, 2021, 512
[2]   Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries [J].
An, Juan ;
Shi, Liyi ;
Chen, Guorong ;
Li, Musen ;
Liu, Hongjiang ;
Yuan, Shuai ;
Chen, Shimou ;
Zhang, Dengsong .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (37) :19738-19744
[3]   Pseudo-Bonding and Electric-Field Harmony for Li-Rich Mn-Based Oxide Cathode [J].
Chen, Jun ;
Zou, Guoqiang ;
Deng, Wentao ;
Huang, Zhaodong ;
Gao, Xu ;
Liu, Cheng ;
Yin, Shouyi ;
Liu, Huanqing ;
Deng, Xinglan ;
Tian, Ye ;
Li, Jiayang ;
Wang, Chiwei ;
Wang, Di ;
Wu, Hanwen ;
Yang, Li ;
Hou, Hongshuai ;
Ji, Xiaobo .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (46)
[4]   Lithium Phosphonate Functionalized Polymer Coating for High-Energy Li[Ni0.8Co0.1Mn0.1]O2 with Superior Performance at Ambient and Elevated Temperatures [J].
Chen, Zhen ;
Nguyen, Huu-Dat ;
Zarrabeitia, Maider ;
Liang, Hai-Peng ;
Geiger, Dorin ;
Kim, Jae-Kwang ;
Kaiser, Ute ;
Passerini, Stefano ;
Iojoiu, Cristina ;
Bresser, Dominic .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (41)
[5]   Tailoring electrolyte to enable high-rate and super-stable Ni-rich NCM cathode materials for Li-ion batteries [J].
Cheng, Fangyuan ;
Zhang, Xiaoyu ;
Qiu, Yuegang ;
Zhang, Jinxu ;
Liu, Yi ;
Wei, Peng ;
Ou, Mingyang ;
Sun, Shixiong ;
Xu, Yue ;
Li, Qing ;
Fang, Chun ;
Han, Jiantao ;
Huang, Yunhui .
NANO ENERGY, 2021, 88
[6]   Ternary Si-SiO-Al Composite Films as High-Performance Anodes for Lithium-Ion Batteries [J].
Cheng, Yan ;
Wei, Kun ;
Yu, Zhaozhe ;
Fan, Dianyuan ;
Yan, Dong Liang ;
Pan, Zhiliang ;
Tian, Bingbing .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (29) :34447-34456
[7]   The Role of Zr Doping in Stabilizing Li[Ni0.6Co0.2Mn0.2]O2 as a Cathode Material for Lithium-Ion Batteries [J].
Choi, Jonghyun ;
Lee, Seung-Yong ;
Yoon, Sangmoon ;
Kim, Kyeong-Ho ;
Kim, Miyoung ;
Hong, Seong-Hyeon .
CHEMSUSCHEM, 2019, 12 (11) :2439-2446
[8]   Enhancing the Electrochemical Performance and Structural Stability of Ni-Rich Layered Cathode Materials via Dual-Site Doping [J].
Chu, Mihai ;
Huang, Zhongyuan ;
Zhang, Taolve ;
Wang, Rui ;
Shao, Tielei ;
Wang, Chaoqi ;
Zhu, Weiming ;
He, Lunhua ;
Chen, Jie ;
Zhao, Wenguang ;
Xiao, Yinguo .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (17) :19950-19958
[9]   Surface Heterostructure Induced by PrPO4 Modification in Li1.2 [Mn0.54Ni0.13Co0.13]O2 Cathode Material for High-Performance Lithium-Ion Batteries with Mitigating Voltage Decay [J].
Ding, Feixiang ;
Li, Jianling ;
Deng, Fuhai ;
Xu, Guofeng ;
Liu, Yanying ;
Yang, Kai ;
Kang, Feiyu .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (33) :27936-27945
[10]   Tailoring the Al distribution in secondary particles for optimizing the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 [J].
Du, Fanghui ;
Li, Xiang ;
Wu, Ling ;
Hu, Die ;
Zhou, Qun ;
Sun, Pengpeng ;
Xu, Tao ;
Mei, Chengxiang ;
Hao, Qi ;
Fan, Zhongxu ;
Zheng, Junwei .
CERAMICS INTERNATIONAL, 2021, 47 (09) :12981-12991