Optimizing a Diagnostic Model of Periodontitis by Using Targeted Proteomics

被引:4
|
作者
Reckelkamm, Stefan Lars [2 ]
Kaminska, Inga [1 ]
Baumeister, Sebastian-Edgar [2 ]
Holtfreter, Birte [3 ]
Alayash, Zoheir [2 ]
Rodakowska, Ewa [4 ]
Baginska, Joanna [5 ]
Kaminski, Karol Adam [6 ]
Nolde, Michael [2 ]
机构
[1] Med Univ Bialystok, Dept Integrated Dent, PL-15276 Bialystok, Poland
[2] Univ Munster, Inst Hlth Serv Res Dent, D-48149 Munster, Germany
[3] Univ Med Greifswald, Dept Restorat Dent Periodontol Endodontol & Preve, D-17475 Greifswald, Germany
[4] Univ Bergen, Dept Clin Dent, Cariol Sect, N-5020 Bergen, Norway
[5] Med Univ Bialystok, Dept Dent Propaedeut, PL-15276 Bialystok, Poland
[6] Med Univ Bialystok, Dept Populat Med & Lifestyle Dis Prevent, PL-15269 Bialystok, Poland
关键词
proteomics; prediction model; periodontitis; serum biomarkers; DISEASES; CD46; EXPRESSION; LIFE;
D O I
10.1021/acs.jproteome.3c00230
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Periodontitis (PD), a widespreadchronic infectious disease,compromisesoral health and is associated with various systemic conditions andhematological alterations. Yet, to date, it is not clear whether serumprotein profiling improves the assessment of PD. We collected generalhealth data, performed dental examinations, and generated serum proteinprofiles using novel Proximity Extension Assay technology for 654participants of the Bialystok PLUS study. To evaluate the incrementalbenefit of proteomics, we constructed two logistic regression modelsassessing the risk of having PD according to the CDC/AAP definition;the first one contained established PD predictors, and in addition,the second one was enhanced by extensive protein information. We thencompared both models in terms of overall fit, discrimination, andcalibration. For internal model validation, we performed bootstrapresampling (n = 2000). We identified 14 proteins,which improved the global fit and discrimination of a model of establishedPD risk factors, while maintaining reasonable calibration (area underthe curve 0.82 vs 0.86; P < 0.001). Our resultssuggest that proteomic technologies offer an interesting advancementin the goal of finding easy-to-use and scalable diagnostic applicationsfor PD that do not require direct examination of the periodontium.
引用
收藏
页码:2509 / 2515
页数:7
相关论文
共 50 条
  • [31] Monitoring casbene synthase in Jatropha curcas tissues using targeted proteomics
    Natália Pinto de Almeida
    Domingos Ferreira Mélo Neto
    Gabriel Reis Alves Carneiro
    Andreza Raquel Barbosa de Farias
    Gilberto Barbosa Domont
    Francisco de Assis de Paiva Campos
    Fábio César Sousa Nogueira
    Plant Methods, 17
  • [32] Differential Analysis of Cereblon Neosubstrates in Rabbit Embryos Using Targeted Proteomics
    Federspiel, Joel D.
    Catlin, Natasha R.
    Nowland, William S.
    Stethem, Christine M.
    Mathialagan, Nagappan
    Ocan, Mireia Fernandez
    Bowman, Christopher J.
    MOLECULAR & CELLULAR PROTEOMICS, 2024, 23 (07)
  • [33] Methods and clinical biomarker discovery for targeted proteomics using Olink technology
    Wang, Han
    Zhao, Tian
    Zeng, Jingjing
    Zhang, Ruijie
    Pu, Liyuan
    Qian, Suying
    Xu, Shan
    Jiang, Yannan
    Pan, Lifang
    Dai, Xiaoyu
    Guo, Xu
    Han, Liyuan
    PROTEOMICS CLINICAL APPLICATIONS, 2024, 18 (05)
  • [34] Quantification of Histone H1 Subtypes Using Targeted Proteomics
    Lopez-Gomez, Jordi
    Villarreal, Laura
    Andres, Marta
    Ponte, Inma
    Xicoy, Blanca
    Zamora, Lurdes
    Vilaseca, Marta
    Roque, Alicia
    BIOMOLECULES, 2024, 14 (10)
  • [35] Biomarker discovery in cardiac allograft vasculopathy using targeted aptamer proteomics
    Almufleh, Aws
    Zhang, Liyong
    Mielniczuk, Lisa M.
    Stadnick, Ellamae
    Davies, Ross A.
    Du, Qiujiang
    Rayner, Katey
    Liu, Peter P.
    Chih, Sharon
    CLINICAL TRANSPLANTATION, 2020, 34 (01)
  • [36] Quantification of mutant SPOP proteins in prostate cancer using targeted proteomics
    Wang, Hui
    Barbieri, Christopher
    He, Jintang
    Gao, Yuqian
    Wu, Chaochao
    Schepmoes, Athena
    Fillmore, Thomas
    Shi, Tujin
    Chae, Sung-Suk
    Huang, Dennis
    Mosquera, Juan Miguel
    Qian, Wei-Jun
    Smith, Richard
    Srivastava, Sudhir
    Kagan, Jacob
    Camp, David
    Rodland, Karin
    Rubin, Mark
    Liu, Tao
    CANCER RESEARCH, 2016, 76
  • [37] USING TARGETED QUANTITATIVE PROTEOMICS TO BETTER UNDERSTAND VARIABILITY OF THE GLUCURONIDATION PATHWAY
    Margaillan, Guillaume
    Klein, Kathrin
    Menard, Vincent
    Villeneuve, Lyne
    Fallon, John K.
    Caron, Patrick
    Turcotte, Veronique
    Smith, Philip C.
    Zanger, Ulrich M.
    Guillemette, Chantal
    DRUG METABOLISM REVIEWS, 2014, 45 : 64 - 64
  • [38] Monitoring casbene synthase in Jatropha curcas tissues using targeted proteomics
    de Almeida, Natalia Pinto
    Melo Neto, Domingos Ferreira
    Alves Carneiro, Gabriel Reis
    Barbosa de Farias, Andreza Raquel
    Domont, Gilberto Barbosa
    de Paiva Campos, Francisco de Assis
    Sousa Nogueira, Fabio Cesar
    PLANT METHODS, 2021, 17 (01)
  • [39] Optimizing delivery of flurbiprofen to the colon using a targeted prodrug approach
    Philip, Anil K.
    Dubey, Rajesh K.
    Pathak, Kamla
    JOURNAL OF PHARMACY AND PHARMACOLOGY, 2008, 60 (05) : 607 - 613
  • [40] Optimizing sample handling for urinary proteomics
    Lee, Richard S.
    Monigatti, Flavio
    Briscoe, Andrew C.
    Waldon, Zachary
    Freernan, Michael R.
    Steen, Hanno
    JOURNAL OF PROTEOME RESEARCH, 2008, 7 (09) : 4022 - 4030