Optimizing a Diagnostic Model of Periodontitis by Using Targeted Proteomics

被引:4
|
作者
Reckelkamm, Stefan Lars [2 ]
Kaminska, Inga [1 ]
Baumeister, Sebastian-Edgar [2 ]
Holtfreter, Birte [3 ]
Alayash, Zoheir [2 ]
Rodakowska, Ewa [4 ]
Baginska, Joanna [5 ]
Kaminski, Karol Adam [6 ]
Nolde, Michael [2 ]
机构
[1] Med Univ Bialystok, Dept Integrated Dent, PL-15276 Bialystok, Poland
[2] Univ Munster, Inst Hlth Serv Res Dent, D-48149 Munster, Germany
[3] Univ Med Greifswald, Dept Restorat Dent Periodontol Endodontol & Preve, D-17475 Greifswald, Germany
[4] Univ Bergen, Dept Clin Dent, Cariol Sect, N-5020 Bergen, Norway
[5] Med Univ Bialystok, Dept Dent Propaedeut, PL-15276 Bialystok, Poland
[6] Med Univ Bialystok, Dept Populat Med & Lifestyle Dis Prevent, PL-15269 Bialystok, Poland
关键词
proteomics; prediction model; periodontitis; serum biomarkers; DISEASES; CD46; EXPRESSION; LIFE;
D O I
10.1021/acs.jproteome.3c00230
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Periodontitis (PD), a widespreadchronic infectious disease,compromisesoral health and is associated with various systemic conditions andhematological alterations. Yet, to date, it is not clear whether serumprotein profiling improves the assessment of PD. We collected generalhealth data, performed dental examinations, and generated serum proteinprofiles using novel Proximity Extension Assay technology for 654participants of the Bialystok PLUS study. To evaluate the incrementalbenefit of proteomics, we constructed two logistic regression modelsassessing the risk of having PD according to the CDC/AAP definition;the first one contained established PD predictors, and in addition,the second one was enhanced by extensive protein information. We thencompared both models in terms of overall fit, discrimination, andcalibration. For internal model validation, we performed bootstrapresampling (n = 2000). We identified 14 proteins,which improved the global fit and discrimination of a model of establishedPD risk factors, while maintaining reasonable calibration (area underthe curve 0.82 vs 0.86; P < 0.001). Our resultssuggest that proteomic technologies offer an interesting advancementin the goal of finding easy-to-use and scalable diagnostic applicationsfor PD that do not require direct examination of the periodontium.
引用
收藏
页码:2509 / 2515
页数:7
相关论文
共 50 条
  • [21] A Targeted Proteomics Approach Reveals a Serum Protein Signature as a Diagnostic Biomarker for Colorectal Cancer
    Wan, Yu
    Luo, Wenfeng
    Song, Xiaoyu
    Zhao, Ying
    Han, Zeping
    Shen, Jian
    Xie, Fangmei
    Li, Yuguang
    He, Jinhua
    JOURNAL OF INFLAMMATION RESEARCH, 2024, 17 : 10755 - 10768
  • [22] A diagnostic model for COVID-19 based on proteomics analysis
    Alkady, Walaa
    ElBahnasy, Khaled
    Gad, Walaa
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 162
  • [23] Proteomics in diagnostic neuropathology
    Johnson, Mahlon D.
    Floyd, John L.
    Caprioli, Richard M.
    JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2006, 65 (09): : 837 - 845
  • [24] Characterization of a human pluripotent stem cell-derived model of neuronal development using multiplexed targeted proteomics
    Dunkley, Tom
    Costa, Veronica
    Friedlein, Arno
    Lugert, Sebastian
    Aigner, Stefan
    Ebeling, Martin
    Miller, Meghan T.
    Patsch, Christoph
    Piraino, Paolo
    Cutler, Paul
    Jagasia, Ravi
    PROTEOMICS CLINICAL APPLICATIONS, 2015, 9 (7-8) : 684 - 694
  • [25] PROTEOMICS AS DIAGNOSTIC MARKERS
    Tomasi, Aldo
    Bellei, Elisa
    Bergamini, Stefania
    Cuoghi, Aurora
    Monari, Emanuela
    IUBMB LIFE, 2009, 61 (03) : 282 - 282
  • [26] A targeted proteomics approach reveals a serum protein signature as diagnostic biomarker for resectable gastric cancer
    Shen, Qiujin
    Polom, Karol
    Williams, Coralie
    de Oliveira, Felipe Marques Souza
    Guergova-Kuras, Mariana
    Lisacek, Frederique
    Karlsson, Niclas G.
    Roviello, Franco
    Kamali-Moghaddam, Masood
    EBIOMEDICINE, 2019, 44 : 322 - 333
  • [27] Discovery of diagnostic serum biomarkers of gastric cancer using proteomics
    Lam, Katie Wing-kei
    Lo, Samuel Chun-Lap
    PROTEOMICS CLINICAL APPLICATIONS, 2008, 2 (02) : 219 - 228
  • [28] Trends in QconCATs for targeted proteomics
    Chen, Junjun
    Turko, Illarion V.
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2014, 57 : 1 - 5
  • [29] Bioinformatic Challenges in Targeted Proteomics
    Reker, Daniel
    Malmstroem, Lars
    JOURNAL OF PROTEOME RESEARCH, 2012, 11 (09) : 4393 - 4402
  • [30] Targeted proteomics: Bench to bedside
    Nita-Lazar, Aleksandra
    Goodlett, David R.
    JOURNAL OF PROTEOMICS, 2018, 189 : III - IV