Optimizing a Diagnostic Model of Periodontitis by Using Targeted Proteomics

被引:4
|
作者
Reckelkamm, Stefan Lars [2 ]
Kaminska, Inga [1 ]
Baumeister, Sebastian-Edgar [2 ]
Holtfreter, Birte [3 ]
Alayash, Zoheir [2 ]
Rodakowska, Ewa [4 ]
Baginska, Joanna [5 ]
Kaminski, Karol Adam [6 ]
Nolde, Michael [2 ]
机构
[1] Med Univ Bialystok, Dept Integrated Dent, PL-15276 Bialystok, Poland
[2] Univ Munster, Inst Hlth Serv Res Dent, D-48149 Munster, Germany
[3] Univ Med Greifswald, Dept Restorat Dent Periodontol Endodontol & Preve, D-17475 Greifswald, Germany
[4] Univ Bergen, Dept Clin Dent, Cariol Sect, N-5020 Bergen, Norway
[5] Med Univ Bialystok, Dept Dent Propaedeut, PL-15276 Bialystok, Poland
[6] Med Univ Bialystok, Dept Populat Med & Lifestyle Dis Prevent, PL-15269 Bialystok, Poland
关键词
proteomics; prediction model; periodontitis; serum biomarkers; DISEASES; CD46; EXPRESSION; LIFE;
D O I
10.1021/acs.jproteome.3c00230
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Periodontitis (PD), a widespreadchronic infectious disease,compromisesoral health and is associated with various systemic conditions andhematological alterations. Yet, to date, it is not clear whether serumprotein profiling improves the assessment of PD. We collected generalhealth data, performed dental examinations, and generated serum proteinprofiles using novel Proximity Extension Assay technology for 654participants of the Bialystok PLUS study. To evaluate the incrementalbenefit of proteomics, we constructed two logistic regression modelsassessing the risk of having PD according to the CDC/AAP definition;the first one contained established PD predictors, and in addition,the second one was enhanced by extensive protein information. We thencompared both models in terms of overall fit, discrimination, andcalibration. For internal model validation, we performed bootstrapresampling (n = 2000). We identified 14 proteins,which improved the global fit and discrimination of a model of establishedPD risk factors, while maintaining reasonable calibration (area underthe curve 0.82 vs 0.86; P < 0.001). Our resultssuggest that proteomic technologies offer an interesting advancementin the goal of finding easy-to-use and scalable diagnostic applicationsfor PD that do not require direct examination of the periodontium.
引用
收藏
页码:2509 / 2515
页数:7
相关论文
共 50 条
  • [1] Assessing a multiplex-targeted proteomics approach for the clinical diagnosis of periodontitis using saliva samples
    Mertens, Brenda
    Orti, Valerie
    Vialaret, Jerome
    Gibert, Philippe
    Relano-Gines, Aroa
    Lehmann, Sylvain
    de Periere, Dominique Deville
    Hirtz, Christophe
    BIOANALYSIS, 2018, 10 (01) : 35 - 45
  • [2] Deep sequencing salivary proteins for periodontitis using proteomics
    Shin, Myung-Seop
    Kim, Yun-Gon
    Shin, Yoo Jin
    Ko, Byoung Joon
    Kim, Sungtae
    Kim, Hyun-Duck
    CLINICAL ORAL INVESTIGATIONS, 2019, 23 (09) : 3571 - 3580
  • [3] Deep sequencing salivary proteins for periodontitis using proteomics
    Myung-Seop Shin
    Yun-Gon Kim
    Yoo Jin Shin
    Byoung Joon Ko
    Sungtae Kim
    Hyun-Duck Kim
    Clinical Oral Investigations, 2019, 23 : 3571 - 3580
  • [4] Data from a targeted proteomics approach to discover biomarkers in saliva for the clinical diagnosis of periodontitis
    Orti, V.
    Mertens, B.
    Vialaret, J.
    Gibert, P.
    Relano-Gines, A.
    Lehmann, S.
    de Periere, D. Deville
    Hirtz, C.
    DATA IN BRIEF, 2018, 18 : 294 - 299
  • [5] Targeted proteomics in the kidney using ensembles of antibodies
    Knepper, MA
    Masilamani, S
    ACTA PHYSIOLOGICA SCANDINAVICA, 2001, 173 (01): : 11 - 21
  • [6] Characterization of Protein Complexes using Targeted Proteomics
    Ramos Gomez, Yassel
    Gallien, Sebastien
    Huerta, Vivian
    van Oostrum, Jan
    Domon, Bruno
    Javier Gonzalez, Luis
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2014, 14 (03) : 344 - 350
  • [7] Multiplexed targeted proteomics signature for serum diagnostic of malignant pleural mesothelioma
    Cerciello, F.
    Choi, M.
    Lomeo, K.
    Amann, J. M.
    Felley-Bosco, E.
    Stahel, R. A.
    Robinson, B.
    Creaney, J.
    Pass, H. I.
    Vitek, O.
    Carbone, D. P.
    ANNALS OF ONCOLOGY, 2017, 28
  • [8] Application of Proteomics in Apical Periodontitis
    Hussein, Hebatullah
    Kishen, Anil
    FRONTIERS IN DENTAL MEDICINE, 2022, 3
  • [9] Targeted proteomics
    Doerr, Allison
    NATURE METHODS, 2010, 7 (01) : 34 - 34
  • [10] Targeted proteomics
    Allison Doerr
    Nature Methods, 2010, 7 (1) : 34 - 34