The X-Ray Transform on a Generic Family of Smooth Curves

被引:2
作者
Zhang, Yang [1 ]
机构
[1] Univ Washington, Univ Washington Seattle Campus, Seattle, WA 98195 USA
关键词
X-ray transform; A generic family of smooth curves; Conjugate points; Artifacts; GEOMETRY;
D O I
10.1007/s12220-023-01236-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the X-ray transform over a generic family of smooth curves in R-2 with a Riemannian metric g. We show that the singularities cannot be recovered from local data in the presence of conjugate points, and therefore artifacts may arise in the reconstruction. We perform numerical experiments to illustrate the results.
引用
收藏
页数:27
相关论文
共 34 条
[11]  
Ginzburg V., 1996, Contact and Symplectic Geometry, P131
[12]   SOME PROBLEMS IN INTEGRAL GEOMETRY AND SOME RELATED PROBLEMS IN MICRO-LOCAL ANALYSIS [J].
GUILLEMIN, V ;
STERNBERG, S .
AMERICAN JOURNAL OF MATHEMATICS, 1979, 101 (04) :915-955
[13]  
Guillemin V., 1990, GEOMETRIC ASYMPTOTIC
[14]  
Guillemin VictorW., 1985, SOME RESULTS GELFAND
[15]  
Helgason S., 2013, The Radon Transform
[16]   The attenuated geodesic x-ray transform [J].
Holman, Sean ;
Monard, Francois ;
Stefanov, Plamen .
INVERSE PROBLEMS, 2018, 34 (06)
[17]   ON THE MICROLOCAL ANALYSIS OF THE GEODESIC X-RAY TRANSFORM WITH CONJUGATE POINTS [J].
Holman, Sean ;
Uhlmann, Gunther .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2018, 108 (03) :459-494
[18]   Injectivity and Stability for a Generic Class of Generalized Radon Transforms [J].
Homan, Andrew ;
Zhou, Hanming .
JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (02) :1515-1529
[19]  
Hormander L., 1985, ANAL LINEAR PARTIAL, DOI [10.1007/978-3-642-00136-9, DOI 10.1007/978-3-642-00136-9]
[20]  
Kunstmann P.C., 2021, SEISMIC IMAGING GEN