An additively manufactured manifold-microchannel heat sink for high-heat flux cooling

被引:28
|
作者
Kong, Daeyoung [1 ]
Jung, Euibeen [1 ]
Kim, Yunseo [1 ]
Manepalli, Vivek Vardhan [2 ]
Rah, Kyupaeck Jeff [3 ]
Kim, Han Sang [3 ]
Hong, Yongtaek [3 ]
Choi, Hyoung Gil [3 ]
Agonafer, Damena [2 ]
Lee, Hyoungsoon [1 ,4 ]
机构
[1] Chung Ang Univ, Dept Intelligent Energy & Ind, Seoul 06974, South Korea
[2] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
[3] Samsung Elect Co Ltd, Global Technol Ctr, Suwon 16677, South Korea
[4] Chung Ang Univ, Sch Mech Engn, Seoul 06974, South Korea
关键词
Additive manufacturing; Laser powder bed fusion; Manifold microchannel; Electronics cooling; Thermal management; THERMAL MANAGEMENT; PRESSURE-DROP; TRANSFER PERFORMANCE; ELECTRONICS; FLOW; IMPINGEMENT; ENHANCEMENT; EXCHANGER;
D O I
10.1016/j.ijmecsci.2023.108228
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Active liquid cooling technique with great efficiency not only reduces power consumption but also effectively dissipates high heat flux. In this study, a manifold-microchannel heat sink (MMCHS) was monolithically fabri-cated by additive manufacturing, and the thermal and hydraulic performance was investigated in a closed loop. Utilizing AlSi10Mg powder, the laser powder bed fusion process was used to fabricate the complex heat sink structure by directly putting a 3D liquid routing manifold structure on a typical microchannel. The MMCHS, with an overall size of 30 x 15 x 9 mm3, can support a heated area of 10 x 10 mm2 and features a tapered structure to facilitate uniform coolant flow. This system contains microchannels with a width and height of 0.2 mm and 2 mm, respectively, with an aspect ratio of AR = 21. Our results show that the MMCHS can dissipate effective heat flux up to 240 W/cm2 with a mass flow rate of 395 g/min with a considerably low-pressure drop of 1.7 kPa and low heated surface temperature of 100 degrees C. The corresponding total thermal resistance is as low as 0.21 K/W. In addition, numerical simulations showed detailed flow information as well as good agreement with experimental data. Finally, methods for structural improvement of the manifold microchannel were suggested based on the experimental and numerical results.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Single-phase Cooling Performance of a Topology Optimized and Additively-Manufactured Multi-Pass Branching Microchannel Heat Sink
    Joshi, Shailesh N.
    Yu, Ziqi
    Sennoun, Hacin
    Hampshire, Joseph
    Dede, Ercan M.
    PROCEEDINGS OF THE NINETEENTH INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS (ITHERM 2020), 2020, : 790 - 795
  • [22] Evaluation of Additively Manufactured Microchannel Heat Sinks
    Collins, Ivel L.
    Weibel, Justin A.
    Pan, Liang
    Garimella, Suresh V.
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2019, 9 (03): : 446 - 457
  • [23] Numerical evaluation of additively manufactured lattice architectures for heat sink applications
    Dixit, Tisha
    Nithiarasu, Perumal
    Kumar, S.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2021, 159
  • [24] Optimization of Manifold Microchannel Heat Sink Based on Design of Experiment Method
    Wei, Xingguo
    Feng, Yu
    Yan, Taisen
    Li, Wansheng
    Lv, Qinghang
    Qin, Jiang
    ASME JOURNAL OF HEAT AND MASS TRANSFER, 2024, 146 (08):
  • [25] Coupling CFD and RSM to optimize the flow and heat transfer performance of a manifold microchannel heat sink
    Farzad Pourfattah
    Mohsen Faraji Kheryrabadi
    Lian-Ping Wang
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45
  • [26] Numerical Investigation of Geometric Parameters Effects on Heat Transfer Enhancement in a Manifold Microchannel Heat Sink
    Babaei, M. R.
    Sheikhzadeh, G. A.
    Arani, A. A. Abbasian
    INTERNATIONAL JOURNAL OF ENGINEERING, 2022, 35 (05): : 943 - 953
  • [27] Design and characterization of a copper microchannel heat sink for SiP cooling
    Miao, Min
    Zhang, Hao
    Yu, Hejie
    Cao, Lili
    MODERN PHYSICS LETTERS B, 2021, 35 (28):
  • [28] Liquid Nitrogen Flow Boiling Critical Heat Flux in Additively Manufactured Cooling Channels
    Ortega, Debra
    Amador, Alejandro
    Ahmad, Mohiuddin
    Choudhuri, Ahsan
    Rahman, Md Mahamudur
    AEROSPACE, 2023, 10 (06)
  • [29] Optimal Design of Additively Manufactured Metal Lattice Heat Sinks for Electronics Cooling
    Bharadwaj, Bharath
    Singh, Prashant
    Mahajan, Roop L.
    PROCEEDINGS OF ASME 2022 HEAT TRANSFER SUMMER CONFERENCE, HT2022, 2022,
  • [30] Numerical study on heat transfer characteristics of a pin-fin staggered manifold microchannel heat sink
    Pan, Yu -Hui
    Zhao, Rui
    Nian, Yong -Le
    Cheng, Wen -Long
    APPLIED THERMAL ENGINEERING, 2023, 219