An additively manufactured manifold-microchannel heat sink for high-heat flux cooling

被引:28
|
作者
Kong, Daeyoung [1 ]
Jung, Euibeen [1 ]
Kim, Yunseo [1 ]
Manepalli, Vivek Vardhan [2 ]
Rah, Kyupaeck Jeff [3 ]
Kim, Han Sang [3 ]
Hong, Yongtaek [3 ]
Choi, Hyoung Gil [3 ]
Agonafer, Damena [2 ]
Lee, Hyoungsoon [1 ,4 ]
机构
[1] Chung Ang Univ, Dept Intelligent Energy & Ind, Seoul 06974, South Korea
[2] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
[3] Samsung Elect Co Ltd, Global Technol Ctr, Suwon 16677, South Korea
[4] Chung Ang Univ, Sch Mech Engn, Seoul 06974, South Korea
关键词
Additive manufacturing; Laser powder bed fusion; Manifold microchannel; Electronics cooling; Thermal management; THERMAL MANAGEMENT; PRESSURE-DROP; TRANSFER PERFORMANCE; ELECTRONICS; FLOW; IMPINGEMENT; ENHANCEMENT; EXCHANGER;
D O I
10.1016/j.ijmecsci.2023.108228
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Active liquid cooling technique with great efficiency not only reduces power consumption but also effectively dissipates high heat flux. In this study, a manifold-microchannel heat sink (MMCHS) was monolithically fabri-cated by additive manufacturing, and the thermal and hydraulic performance was investigated in a closed loop. Utilizing AlSi10Mg powder, the laser powder bed fusion process was used to fabricate the complex heat sink structure by directly putting a 3D liquid routing manifold structure on a typical microchannel. The MMCHS, with an overall size of 30 x 15 x 9 mm3, can support a heated area of 10 x 10 mm2 and features a tapered structure to facilitate uniform coolant flow. This system contains microchannels with a width and height of 0.2 mm and 2 mm, respectively, with an aspect ratio of AR = 21. Our results show that the MMCHS can dissipate effective heat flux up to 240 W/cm2 with a mass flow rate of 395 g/min with a considerably low-pressure drop of 1.7 kPa and low heated surface temperature of 100 degrees C. The corresponding total thermal resistance is as low as 0.21 K/W. In addition, numerical simulations showed detailed flow information as well as good agreement with experimental data. Finally, methods for structural improvement of the manifold microchannel were suggested based on the experimental and numerical results.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Prediction of flow boiling characteristics in manifold microchannel radiator based on high heat flux cooling
    Li, Chunquan
    Su, Le
    Chen, Qi
    Hu, Yilong
    Wang, Qiao
    Zou, Jiehui
    Shang, Yuling
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2025, 210
  • [22] Additively manufactured lattice structure heat sink for railway power electronics liquid cooling
    Batikh, Ahmad
    Fradin, Jean-Pierre
    Moreno, Antonio Castro
    2022 28TH INTERNATIONAL WORKSHOP ON THERMAL INVESTIGATIONS OF ICS AND SYSTEMS (THERMINIC 2022), 2022,
  • [23] Numerical study on temperature distribution uniformity and cooling performance of manifold microchannel heat sink
    Pu, Xiaojun
    Zhao, Zhongchao
    Sun, Mengke
    Huang, Yeqi
    APPLIED THERMAL ENGINEERING, 2024, 237
  • [24] A diamond made microchannel heat sink for high-density heat flux dissipation
    Yang, Qi
    Zhao, Jingquan
    Huang, Yanpei
    Zhu, Xiaowei
    Fu, Weichun
    Li, Chengming
    Miao, Jianyin
    APPLIED THERMAL ENGINEERING, 2019, 158
  • [25] Analysis of performances of a manifold microchannel heat sink with nanofluids
    Yue, Yun
    Mohammadian, Shahabeddin K.
    Zhang, Yuwen
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2015, 89 : 305 - 313
  • [26] COOLING PERFORMANCE OF NANOFLUIDS IN A MICROCHANNEL HEAT SINK
    Wang, Y.
    Chung, S. J.
    Leonard, J. P.
    Cho, S. K.
    Phuoc, T.
    Soong, Y.
    Chyu, M. K.
    MNHMT2009, VOL 1, 2010, : 617 - 623
  • [27] Optimization of stepwise varying width microchannel heat sink for high heat flux applications
    Abo-Zahhad, Essam M.
    Ookawara, Shinichi
    Radwan, Ali
    Elkady, M. F.
    El-Shazly, A. H.
    CASE STUDIES IN THERMAL ENGINEERING, 2020, 18
  • [28] Optimization of Manifold Microchannel Heat Sink inside Interposer
    Li, Weihao
    Zhu, Longguang
    Ji, Feng
    Yu, Jinling
    Jin, Yufeng
    Wang, Wei
    2019 IEEE 21ST ELECTRONICS PACKAGING TECHNOLOGY CONFERENCE (EPTC), 2019, : 66 - 70
  • [29] Cooling performance of a microchannel heat sink with nanofluids
    Jang, Seok Pil
    Choi, Stephen U. S.
    APPLIED THERMAL ENGINEERING, 2006, 26 (17-18) : 2457 - 2463
  • [30] Optimization design of microchannel cooling heat sink
    Shao, Baodong
    Sun, Zhaowei
    Wang, Lifeng
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2007, 17 (5-6) : 628 - 637