Machine learning accelerated DFT research on platinum-modified amorphous alloy surface catalysts

被引:19
作者
Zhang, Xi [1 ,2 ,3 ]
Li, Kangpu [1 ]
Wen, Bo [1 ,3 ]
Ma, Jiang [2 ]
Diao, Dongfeng [1 ]
机构
[1] Shenzhen Univ, Inst Nanosurface Sci & Engn, Guangdong Prov Key Lab Micro Nano, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Mechatron & Control Engn, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Res Ctr Med Plasma Technol, Shenzhen 518060, Peoples R China
关键词
Hydrogen evolution reaction; Amorphous alloy; Density functional theory; Machine learning; DENSITY-FUNCTIONAL THEORY; HYDROGEN EVOLUTION; OXYGEN REDUCTION; ACTIVITY ORIGIN; EFFICIENT; ADSORPTION; METALS; DESIGN;
D O I
10.1016/j.cclet.2022.107833
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Pt-modified amorphous alloy (Pt@PdNiCuP) catalyst exhibits excellent electro-catalytic activity and high experimental durability for hydrogen evolution reaction (HER). However, the physical origin of the cat-alytically active remains unclear. In this paper, we constructed a distance contribution descriptor (DCD) for the feature engineering of machine learning (ML) potential, and calculated the Gibbs free energies (AGH) of 46,0 0 0 *H binding sites on the Pt@PdNiCuP surface by ML-accelerated density functional the-ory (DFT). The relationship between AGH and DCD revealed that in the H-Pt distance region of 2.0-2.5 A where the parabolic tail and disordered scatters coexist, the H-metal bonding configuration is mainly the bridge-or hollow-bonding type. The contribution analysis of DCD indicates that the joint effect of Pt, Pd and Ni atoms determines the catalytical behavior of amorphous alloy, which agrees well with experi-mental results. By counting atomic percentages in different energy intervals, we obtained the atomic ratio for the best catalytic performance (Pt:Pd:Ni:Cu:P = 0.33:0.17:0.155:0.16:0.185). Projected density of states (PDOS) show that H 1s orbital, Pt 5d orbital, and Pd 4d orbital form a bonding state at -2 eV. These results provide new ideas for designing more active amorphous alloy catalysts.(c) 2023 Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.
引用
收藏
页数:5
相关论文
共 40 条
[1]   Energetics and vibrational states for hydrogen on Pt(111) -: art. no. 136101 [J].
Badescu, SC ;
Salo, P ;
Ala-Nissila, T ;
Ying, SC ;
Jacobi, K ;
Wang, Y ;
Bedürftig, K ;
Ertl, G .
PHYSICAL REVIEW LETTERS, 2002, 88 (13) :4-136101
[2]   High-Entropy Alloys as a Discovery Platform for Electrocatalysis [J].
Batchelor, Thomas A. A. ;
Pedersen, Jack K. ;
Winther, Simon H. ;
Castelli, Ivano E. ;
Jacobsen, Karsten W. ;
Rossmeisl, Jan .
JOULE, 2019, 3 (03) :834-845
[3]   Emerging two-dimensional nanocatalysts for electrocatalytic hydrogen production [J].
Chen, Hong ;
Zhou, Yansong ;
Guo, Wei ;
Xia, Bao Yu .
CHINESE CHEMICAL LETTERS, 2022, 33 (04) :1831-1840
[4]   Ethylene Adsorption on Ag(111), Rh(111) and Ir(111) by (meta)-GGA based Density Functional Theory Calculations [J].
Chen, Pei-pei ;
Zhang, Bing-yan ;
Gu, Xiang-kui ;
Li, Wei-xue .
CHINESE JOURNAL OF CHEMICAL PHYSICS, 2019, 32 (04) :437-443
[5]   Nanoporous Amorphous Fe78Si9B13 Alloys for Hydrogen Evolution in Alkaline Media [J].
Chu, Fei ;
Wu, Kaiyao ;
Meng, Yuying ;
You, Deqiang ;
Li, Wei ;
Lin, Huai-Jun .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2021, 566
[6]   Understanding activity origin for the oxygen reduction reaction on bi-atom catalysts by DFT studies and machine-learning [J].
Deng, Chaofang ;
Su, Yang ;
Li, Fuhua ;
Shen, Weifeng ;
Chen, Zhongfang ;
Tang, Qing .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (46) :24563-24571
[7]  
Dutta S, 2014, J IND ENG CHEM, V20, P1148
[8]   Machine learning for heterogeneous catalyst design and discovery [J].
Goldsmith, Bryan R. ;
Esterhuizen, Jacques ;
Liu, Jin-Xun ;
Bartel, Christopher J. ;
Sutton, Christopher .
AICHE JOURNAL, 2018, 64 (07) :2311-2323
[9]   Biornimetic hydrogen evolution:: MoS2 nanoparticles as catalyst for hydrogen evolution [J].
Hinnemann, B ;
Moses, PG ;
Bonde, J ;
Jorgensen, KP ;
Nielsen, JH ;
Horch, S ;
Chorkendorff, I ;
Norskov, JK .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (15) :5308-5309
[10]   Density functional theory: Its origins, rise to prominence, and future [J].
Jones, R. O. .
REVIEWS OF MODERN PHYSICS, 2015, 87 (03) :897-923