Stability of the 2D Boussinesq equations with a velocity damping term in the strip domain

被引:1
作者
Luo, Zekai [1 ]
Ren, Xiaoxia [1 ]
机构
[1] North China Elect Power Univ, Dept Math & Phys, Beijing 102206, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2023年 / 74卷 / 02期
关键词
Boussinesq equations; Strip domain; Low regularity; GLOBAL WELL-POSEDNESS;
D O I
10.1007/s00033-023-01951-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the global well-posedness for the 2D Boussinesq equations with a velocity damping term around the equilibrium state (0, x(2)) in the strip domain R x (0, 1) with Navier-type slip boundary condition. It is worth mentioning that the results of low regularity are obtained using only the energy estimate and the structure of the equations.
引用
收藏
页数:20
相关论文
共 21 条
[1]   Small global solutions to the damped two-dimensional Boussinesq equations [J].
Adhikari, Dhanapati ;
Cao, Chongsheng ;
Wu, Jiahong ;
Xu, Xiaojing .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (11) :3594-3613
[2]  
[Anonymous], 1875, Ann. Chim. Phys.
[3]  
Brezis H, 2011, UNIVERSITEXT, P1
[4]   Global Regularity for the Two-Dimensional Anisotropic Boussinesq Equations with Vertical Dissipation [J].
Cao, Chongsheng ;
Wu, Jiahong .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 208 (03) :985-1004
[5]   On the asymptotic stability of stratified solutions for the 2D Boussinesq equations with a velocity damping term [J].
Castro, Angel ;
Cordoba, Diego ;
Lear, Daniel .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (07) :1227-1277
[6]   Global regularity for the 2D Boussinesq equations with partial viscosity terms [J].
Chae, Dongho .
ADVANCES IN MATHEMATICS, 2006, 203 (02) :497-513
[7]   Long time behavior of the two-dimensional Boussinesq equations without buoyancy diffusion [J].
Doering, Charles R. ;
Wu, Jiahong ;
Zhao, Kun ;
Zheng, Xiaoming .
PHYSICA D-NONLINEAR PHENOMENA, 2018, 376 :144-159
[8]  
Dong L., 2021, ARXIV
[9]   On Asymptotic Stability of the 3D Boussinesq Equations with a Velocity Damping Term [J].
Dong, Lihua .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (01)
[10]  
Hmidi T., 2007, ADV DIFFERENTIAL EQU, V12, P461