Bayesian Structure Learning and Sampling of Bayesian Networks with the R Package BiDAG

被引:17
作者
Suter, Polina [1 ,2 ]
Moffa, Giusi [3 ]
Kuipers, Jack [1 ,2 ]
Beerenwinkel, Niko [1 ,2 ]
机构
[1] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, Mattenstr 26, CH-4058 Basel, Switzerland
[2] SIB Swiss Inst Bioinformat, CH-4058 Basel, Switzerland
[3] Univ Basel, Dept Math & Comp Sci, Spiegelgasse 1, CH-4051 Basel, Switzerland
关键词
Bayesian networks; dynamic Bayesian networks; structure learning; Bayesian in-ference; MCMC; R; GRAPHICAL MODELS;
D O I
10.18637/jss.v105.i09
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The R package BiDAG implements Markov chain Monte Carlo (MCMC) methods for structure learning and sampling of Bayesian networks. The package includes tools to search for a maximum a posteriori (MAP) graph and to sample graphs from the posterior distribution given the data. A new hybrid approach to structure learning enables inference in large graphs. In the first step, we define a reduced search space by means of the PC algorithm or based on prior knowledge. In the second step, an iterative order MCMC scheme proceeds to optimize the restricted search space and estimate the MAP graph. Sampling from the posterior distribution is implemented using either order or partition MCMC. The models and algorithms can handle both discrete and continuous data. The BiDAG package also provides an implementation of MCMC schemes for structure learning and sampling of dynamic Bayesian networks.
引用
收藏
页码:1 / 31
页数:31
相关论文
共 50 条
[41]   On learning with Bayesian networks [J].
Gupal, A.M. ;
Vagis, A.A. .
Problemy Upravleniya I Informatiki (Avtomatika), 2002, (03) :106-111
[42]   An efficient Bayesian approach for Gaussian Bayesian network structure learning [J].
Han, Shengtong ;
Zhang, Hongmei ;
Homayouni, Ramin ;
Karmaus, Wilfried .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (07) :5070-5084
[43]   Exact Bayesian structure discovery in Bayesian networks [J].
Koivisto, M ;
Sood, K .
JOURNAL OF MACHINE LEARNING RESEARCH, 2004, 5 :549-573
[44]   Inductive transfer for learning Bayesian networks [J].
Roger Luis ;
L. Enrique Sucar ;
Eduardo F. Morales .
Machine Learning, 2010, 79 :227-255
[45]   BayesMortalityPlus: A Package in R for Bayesian Mortality Modeling [J].
Silva, Lucas M. F. ;
Figueiredo, Luiz F. V. ;
Lobo, Viviana G. R. ;
Fonseca, Thais C. O. ;
Alves, Mariane B. .
JOURNAL OF STATISTICAL SOFTWARE, 2025, 113 (09) :1-49
[46]   BANOVA: An R Package for Hierarchical Bayesian ANOVA [J].
Dong, Chen ;
Wedel, Michel .
JOURNAL OF STATISTICAL SOFTWARE, 2017, 81 (09) :1-46
[47]   CONSTRUCTION AND METHODS OF LEARNING OF BAYESIAN NETWORKS [J].
Bidyuk, P. I. ;
Terent'ev, A. N. ;
Gasanov, A. S. .
CYBERNETICS AND SYSTEMS ANALYSIS, 2005, 41 (04) :587-598
[48]   Inductive transfer for learning Bayesian networks [J].
Luis, Roger ;
Enrique Sucar, L. ;
Morales, Eduardo F. .
MACHINE LEARNING, 2010, 79 (1-2) :227-255
[49]   Bayesian spatially varying coefficient models in the spBayes R package [J].
Finley, Andrew O. ;
Banerjee, Sudipto .
ENVIRONMENTAL MODELLING & SOFTWARE, 2020, 125
[50]   Learning Non-Stationary Dynamic Bayesian Networks [J].
Robinson, Joshua W. ;
Hartemink, Alexander J. .
JOURNAL OF MACHINE LEARNING RESEARCH, 2010, 11 :3647-3680