Quantum Fisher information matrix for the two-axis twisting model at thermal equilibrium

被引:0
作者
Aldhuwayhi, Mona [1 ]
Zidan, Nour [1 ]
Alhashash, Abeer [1 ]
Rahman, Atta Ur [2 ]
机构
[1] Jouf Univ, Coll Sci, Dept Math, POB 2014, Sakaka, Saudi Arabia
[2] Univ Chinese Acad Sci, Sch Phys, Yuquan Rd 19A, Beijing 100049, Peoples R China
关键词
Quantum Fisher information matrix; two-axis twisting model; simultaneous and individual estimation; ENTANGLEMENT;
D O I
10.1142/S0217732322502078
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Quantum Fisher Information Matrix (QFIM) is a fundamental concept in quantum-theoretical measurement that emphasizes the importance of quantum Cramer-Rao bound in estimating quantum parameters. Many relationships have been discovered between QFIM and many recent areas of research in quantum information. These relationships indicate that QFIM is not just a concept in quantum metrology but is a fundamental quantity in quantum information. The ability to estimate parameters and describe the optimal induced conditions for the thermal state of the two-axis twisting model was examined. QFIM is used as an estimator for multiple parameters. We show that simultaneous estimation reduces the estimate of parameter variation, so the accuracy of simultaneously estimating parameters is much better than individually. Each parameter can be used to control the criterion to reduce the minimum differences between other parameters.
引用
收藏
页数:18
相关论文
共 46 条
[1]   Spin squeezing properties of an initial coherent state via a two-axis countertwisting Hamiltonian in the presence and absence of an external field [J].
Akhound, A. ;
Jafarpour, M. .
5TH INTERNATIONAL SYMPOSIUM ON QUANTUM THEORY AND SYMMETRIES QTS5, 2008, 128
[2]  
Alenezi M., 2022, INT J THEOR PHYS, V16, P1
[3]   The optimal estimation state of one-axis twisting model [J].
Alhashash, Abeer ;
Zidan, Nour ;
Metwally, Nasser .
OPTIK, 2021, 226
[4]   Quantum Fisher information matrix in Heisenberg XY model [J].
Bakmou, L. ;
Slaoui, A. ;
Daoud, M. ;
Laamara, R. Ahl .
QUANTUM INFORMATION PROCESSING, 2019, 18 (06)
[5]   Quantum information-geometry of dissipative quantum phase transitions [J].
Banchi, Leonardo ;
Giorda, Paolo ;
Zanardi, Paolo .
PHYSICAL REVIEW E, 2014, 89 (02)
[6]   Nonlinear Quantum Metrology of Many-Body Open Systems [J].
Beau, M. ;
del Campo, A. .
PHYSICAL REVIEW LETTERS, 2017, 119 (01)
[7]   Maximal quantum Fisher information matrix [J].
Chen, Yu ;
Yuan, Haidong .
NEW JOURNAL OF PHYSICS, 2017, 19
[8]   Tradeoff in simultaneous quantum-limited phase and loss estimation in interferometry [J].
Crowley, Philip J. D. ;
Datta, Animesh ;
Barbieri, Marco ;
Walmsley, I. A. .
PHYSICAL REVIEW A, 2014, 89 (02)
[9]   Quantum speed limits: from Heisenberg's uncertainty principle to optimal quantum control [J].
Deffner, Sebastian ;
Campbell, Steve .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (45)
[10]   The elusive Heisenberg limit in quantum-enhanced metrology [J].
Demkowicz-Dobrzanski, Rafal ;
Kolodynski, Jan ;
Guta, Madalin .
NATURE COMMUNICATIONS, 2012, 3