Kinematical barriers enhanced dislocation strengthening mechanisms in cold-worked austenitic steels

被引:13
作者
Zhang, Tian [1 ]
Tang, Jie [1 ]
He, Shudong [1 ]
Jiang, Fulin [1 ]
Fu, Dingfa [1 ]
Teng, Jie [1 ]
Wang, Jian [2 ]
机构
[1] Hunan Univ, Coll Mat Sci & Engn, Changsha 410082, Peoples R China
[2] Univ Nebraska Lincoln, Mech & Mat Engn, Lincoln, NE 68588 USA
基金
中国国家自然科学基金;
关键词
Metal and alloys; Mechanical properties; Dislocation; Twinning; Modeling; DEFORMATION-BEHAVIOR; HARDENING BEHAVIOR; PLASTICITY; EVOLUTION; MICROSTRUCTURE; DUCTILITY; CONTRAST; DENSITY; ALLOYS; TWINS;
D O I
10.1016/j.scriptamat.2022.115237
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We experimentally investigated microstructure evolution and strengthening behaviors of three cold-worked austenitic steels that deform via dislocations, twinning and stacking faults. The development of stacking faults and twins acting as kinematical barriers for dislocation motion was found to be influenced by stacking fault energy and accumulated dislocations simultaneously, which in turn accelerate dislocation storage rate, strengthen the alloys, and develop high strain hardening rate. We thus proposed a nonadditive strengthening equation to rationalize experimental observation by combining the dislocation-based two-internal-variable model coupled with kinematical barriers.
引用
收藏
页数:6
相关论文
共 31 条
[1]   STRAIN-HARDENING OF HADFIELD MANGANESE STEEL [J].
ADLER, PH ;
OLSON, GB ;
OWEN, WS .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1986, 17 (10) :1725-1737
[2]   Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys [J].
Allain, S ;
Chateau, JP ;
Bouaziz, O ;
Migot, S ;
Guelton, N .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 387 :158-162
[3]   Strain-hardening of twinning-induced plasticity steels [J].
Bouaziz, O. .
SCRIPTA MATERIALIA, 2012, 66 (12) :982-985
[4]   Thermodynamic modeling of the stacking fault energy of austenitic steels [J].
Curtze, S. ;
Kuokkala, V. -T. ;
Oikari, A. ;
Talonen, J. ;
Hanninen, H. .
ACTA MATERIALIA, 2011, 59 (03) :1068-1076
[5]   MECHANISM OF WORK-HARDENING IN HADFIELD MANGANESE STEEL [J].
DASTUR, YN ;
LESLIE, WC .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1981, 12 (05) :749-759
[6]   Twinning-induced plasticity (TWIP) steels [J].
De Cooman, Bruno C. ;
Estrin, Yuri ;
Kim, Sung Kyu .
ACTA MATERIALIA, 2018, 142 :283-362
[7]   Superior strength-ductility synergy by hetero-structuring high manganese steel [J].
Fang, Xing ;
Xue, Qiqi ;
Yu, Kaiyuan ;
Li, Runguang ;
Jiang, Daqiang ;
Ge, Lei ;
Ren, Yang ;
Chen, Changfeng ;
Wu, Xiaolei .
MATERIALS RESEARCH LETTERS, 2020, 8 (11) :417-423
[8]   Facile route to bulk ultrafine-grain steels for high strength and ductility [J].
Gao, Junheng ;
Jiang, Suihe ;
Zhang, Huairuo ;
Huang, Yuhe ;
Guan, Dikai ;
Xu, Yidong ;
Guan, Shaokang ;
Bendersky, Leonid A. ;
Davydov, Albert, V ;
Wu, Yuan ;
Zhu, Huihui ;
Wang, Yandong ;
Lu, Zhaoping ;
Rainforth, W. Mark .
NATURE, 2021, 590 (7845) :262-267
[9]   Dislocation and twin substructure evolution during strain hardening of an Fe-22 wt.% Mn-0.6 wt.% C TWIP steel observed by electron channeling contrast imaging [J].
Gutierrez-Urrutia, I. ;
Raabe, D. .
ACTA MATERIALIA, 2011, 59 (16) :6449-6462
[10]   Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J].
Han, Yu ;
Li, Huabing ;
Feng, Hao ;
Li, Kemei ;
Tian, Yanzhong ;
Jiang, Zhouhua .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 65 :210-215