Perspectives on evolutionary and functional importance of intrinsically disordered proteins

被引:9
|
作者
Handa, Tanuj [1 ]
Kundu, Debanjan [1 ]
Dubey, Vikash Kumar [1 ]
机构
[1] Indian Inst Technol BHU, Sch Biochem Engn, Varanasi 221005, Uttar Pradesh, India
关键词
Intrinsically disordered proteins (IDPs); Amyloids; Protein misfolding; Drug development; Intrinsically disordered protein regions (IDPRs); UNSTRUCTURED PROTEINS; STRUCTURAL DISORDER; PREDICTION METHODS; PHASE-SEPARATION; BINDING-SITES; LIGHT; SPECTROSCOPY; FLEXIBILITY; EXTENSIONS; INHIBITORS;
D O I
10.1016/j.ijbiomac.2022.10.120
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Structural biology of proteins emphasises that proteins ought to have an ordered structure to perform their biological role optimally. The over-reliance on the ordered structure of proteins is now slowly shifting towards a more comprehensive discussion platform. Intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) are gaining momentum in protein structural biology as we update ourselves with evolutionary traits and functional importance in various organisms. The evolution and functional significance of this diverse class of protein conformations are based on sequence exhibition, structural attainment, and in-teractions with their immediate surroundings. In this review, we emphasise the evolutionary status of disordered proteins and correlate their functional importance in the physiology of specific organisms. We aim to close this review by establishing a positive correlation between IDPs and their importance in human health and future medicine. Establishing firm roles of IDPs and IDPRs with extensive research will help expand the field of structural biology, helping us understand the fundamentals of protein folding and misfolding, associated diseases and drug design.
引用
收藏
页码:243 / 255
页数:13
相关论文
共 50 条
  • [21] The Structural and Functional Diversity of Intrinsically Disordered Regions in Transmembrane Proteins
    Appadurai, Rajeswari
    Uversky, Vladimir N.
    Srivastava, Anand
    JOURNAL OF MEMBRANE BIOLOGY, 2019, 252 (4-5): : 273 - 292
  • [22] Functional involvement of RNAs and intrinsically disordered proteins in the assembly of heterochromatin
    Obuse, Chikashi
    Nakayama, Jun-ichi
    BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2025, 1869 (06):
  • [23] The Structural and Functional Diversity of Intrinsically Disordered Regions in Transmembrane Proteins
    Rajeswari Appadurai
    Vladimir N. Uversky
    Anand Srivastava
    The Journal of Membrane Biology, 2019, 252 : 273 - 292
  • [24] Functional roles of transiently and intrinsically disordered regions within proteins
    Uversky, Vladimir N.
    FEBS JOURNAL, 2015, 282 (07) : 1182 - 1189
  • [25] Intrinsically Disordered Proteins: An Overview
    Trivedi, Rakesh
    Nagarajaram, Hampapathalu Adimurthy
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (22)
  • [26] Intrinsically disordered proteins and biomineralization
    Boskey, Adele L.
    Villarreal-Ramirez, Eduardo
    MATRIX BIOLOGY, 2016, 52-54 : 43 - 59
  • [27] Intrinsically Disordered Proteins in Cancer
    Meszaros, Balint
    Dosztanyi, Zsuzsanna
    Zeke, Andras
    Remenyi, Attila
    PROTEIN SCIENCE, 2018, 27 : 112 - 113
  • [28] Intrinsically disordered proteins: An update
    Dunker, A. Keith
    Yang, Jack Y.
    Oldfield, Christopher J.
    Obradovic, Zoran
    Meng, Jingwei
    Romero, Pedro
    Uversky, Vladimir N.
    PROCEEDINGS OF THE 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING, VOLS I AND II, 2007, : 49 - +
  • [29] Druggability of Intrinsically Disordered Proteins
    Joshi, Priyanka
    Vendruscolo, Michele
    INTRINSICALLY DISORDERED PROTEINS STUDIED BY NMR SPECTROSCOPY, 2015, 870 : 383 - 400
  • [30] Databases for intrinsically disordered proteins
    Piovesan, Damiano
    Monzon, Alexander Miguel
    Quaglia, Federica
    Tosatto, Silvio C. E.
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2022, 78 : 144 - 151