Numerical solutions to the fractional-order wave equation

被引:6
作者
Khader, M. M. [1 ,2 ]
Inc, Mustafa [3 ,4 ]
Adel, M. [5 ,6 ]
Akinlar, M. Ali [7 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh 11566, Saudi Arabia
[2] Benha Univ, Fac Sci, Dept Math, Banha, Egypt
[3] Firat Univ, Fac Sci, Dept Math, TR-23119 Elazig, Turkey
[4] China Med Univ, Dept Med Res, Taichung, Taiwan
[5] Islamic Univ Madinah, Fac Sci, Dept Math, Medina, Saudi Arabia
[6] Cairo Univ, Dept Math, Fac Sci, Giza, Egypt
[7] Bandirma Onyedi Eylul Univ, Fac Engn & Nat Sci, Engn Sci Dept, TR-10200 Bandirma, Balikesir, Turkey
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2023年 / 34卷 / 05期
关键词
Fractional-order wave equation; Von Neumann type stability; Crank-Nicholson method; DERIVATIVES;
D O I
10.1142/S0129183123500675
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
New numerical solution to the linear fractional-order wave equation is presented. The Liouville-Caputo sense fractional-derivative operator and Crank-Nicholson finite difference method (CN-FDM) algorithm are employed. The stability of the present technique is considered by the fractional Von Neumann stability analysis method. Special example as an application of the method is provided. The obtained results are examined to check the derived stability condition of the proposed algorithm. Computational results indicate that the present numerical algorithm is efficient and applicable for the problem under study and many other problems.
引用
收藏
页数:10
相关论文
共 25 条
[1]   Generalized Lucas polynomial sequence approach for fractional differential equations [J].
Abd-Elhameed, W. M. ;
Youssri, Y. H. .
NONLINEAR DYNAMICS, 2017, 89 (02) :1341-1355
[2]   Numerical simulation by using the spectral collocation optimization method associated with Vieta-Lucas polynomials for a fractional model of non-Newtonian fluid [J].
Adel, M. ;
Assiri, T. A. ;
Khader, M. M. ;
Osman, M. S. .
RESULTS IN PHYSICS, 2022, 41
[3]   Numerical simulation using the non-standard weighted average FDM for 2Dim variable-order Cable equation [J].
Adel, M. ;
Sweilam, N. H. ;
Khader, M. M. ;
Ahmed, S. M. ;
Ahmad, Hijaz ;
Botmart, Thongchai .
RESULTS IN PHYSICS, 2022, 39
[4]  
Adel M., 2022, MATH METHOD APPL SCI, V12, P1
[5]   AN EFFICIENT APPROACH FOR SOLVING FRACTIONAL VARIABLE ORDER REACTION SUB-DIFFUSION BASED ON HERMITE FORMULA [J].
Adel, Mohamed ;
Elsaid, Mohamed .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (01)
[7]  
[Anonymous], 1978, Numerical Solution of Partial Differential Equations
[8]  
Finite Difference Methods
[9]  
Diethelm K., 1997, ELECTRON T NUMER ANA, V5, P1
[10]   Time-domain finite element analysis of viscoelastic structures with fractional derivatives constitutive relations [J].
Enelund, M ;
Josefson, BL .
AIAA JOURNAL, 1997, 35 (10) :1630-1637