Numerical solutions to the fractional-order wave equation

被引:6
|
作者
Khader, M. M. [1 ,2 ]
Inc, Mustafa [3 ,4 ]
Adel, M. [5 ,6 ]
Akinlar, M. Ali [7 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh 11566, Saudi Arabia
[2] Benha Univ, Fac Sci, Dept Math, Banha, Egypt
[3] Firat Univ, Fac Sci, Dept Math, TR-23119 Elazig, Turkey
[4] China Med Univ, Dept Med Res, Taichung, Taiwan
[5] Islamic Univ Madinah, Fac Sci, Dept Math, Medina, Saudi Arabia
[6] Cairo Univ, Dept Math, Fac Sci, Giza, Egypt
[7] Bandirma Onyedi Eylul Univ, Fac Engn & Nat Sci, Engn Sci Dept, TR-10200 Bandirma, Balikesir, Turkey
来源
关键词
Fractional-order wave equation; Von Neumann type stability; Crank-Nicholson method; DERIVATIVES;
D O I
10.1142/S0129183123500675
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
New numerical solution to the linear fractional-order wave equation is presented. The Liouville-Caputo sense fractional-derivative operator and Crank-Nicholson finite difference method (CN-FDM) algorithm are employed. The stability of the present technique is considered by the fractional Von Neumann stability analysis method. Special example as an application of the method is provided. The obtained results are examined to check the derived stability condition of the proposed algorithm. Computational results indicate that the present numerical algorithm is efficient and applicable for the problem under study and many other problems.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Numerical investigation of fractional-order wave-like equation
    Al-Sawalha, M. Mossa
    Shah, Rasool
    Nonlaopon, Kamsing
    Ababneh, Osama Y.
    AIMS MATHEMATICS, 2023, 8 (03): : 5281 - 5302
  • [2] Fractional-order diffusion-wave equation
    ElSayed, AMA
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (02) : 311 - 322
  • [3] A constant fractional-order viscoelastic wave equation and its numerical simulation scheme
    Wang, Ning
    Zhou, Hui
    Chen, Hanming
    Xia, Muming
    Wang, Shucheng
    Fang, Jinwei
    Sun, Pengyuan
    GEOPHYSICS, 2018, 83 (01) : T39 - T48
  • [4] New numerical solutions of fractional-order Korteweg-de Vries equation
    Inc, Mustafa
    Parto-Haghighi, Mohammad
    Akinlar, Mehmet Ali
    Chu, Yu-Ming
    RESULTS IN PHYSICS, 2020, 19
  • [5] Numerical Method to Modify the Fractional-Order Diffusion Equation
    Chen, Yunkun
    ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022
  • [6] Numerical Approximation of Fractional-Order Volterra Integrodifferential Equation
    Qiang, Xiaoli
    Kamran
    Mahboob, Abid
    Chu, Yu-Ming
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [7] New Explicit Solutions to the Fractional-Order Burgers' Equation
    Uddin, M. Hafiz
    Arefin, Mohammad Asif
    Akbar, M. Ali
    Inc, Mustafa
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [8] A novel constant fractional-order Laplacians viscoacoustic wave equation and its numerical simulation method
    Chen H.
    Wang Y.
    Zhou H.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2020, 55 (02): : 302 - 310
  • [9] Analysis and numerical approximation of the fractional-order two-dimensional diffusion-wave equation
    Rafaqat, Kanza
    Naeem, Muhammad
    Akgul, Ali
    Hassan, Ahmed M.
    Abdullah, Farah Aini
    Ali, Umair
    FRONTIERS IN PHYSICS, 2023, 11
  • [10] Numerical simulation technique for fractional-order equation in fractal media
    Cai, Xin
    Liu, Fawang
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 2102 - 2106