Weak* closures and derived sets for convex sets in dual Banach spaces

被引:1
作者
Ostrovskii, Mikhail [1 ]
机构
[1] St Johns Univ, Dept Math & Comp Sci, 8000 Utopia Pkwy, Queens, NY 11439 USA
基金
美国国家科学基金会;
关键词
weak* closure; weak* derived set; weak* sequential closure; SUBSPACES; CONJUGATE; ORDER;
D O I
10.4064/sm211211-25-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is devoted to the convex-set counterpart of the theory of weak* derived sets initiated by Banach and Mazurkiewicz for subspaces. The main result is the following: For every nonreflexive Banach space X and every countable successor ordinal alpha, there exists a convex subset A in X* such that alpha is the least ordinal for which the weak* derived set of order alpha coincides with the weak* closure of A. This result extends the previously known results on weak* derived sets by Ostrovskii (2011) and Silber (2021).
引用
收藏
页码:291 / 310
页数:20
相关论文
共 48 条
  • [1] On Repeated Sequential Closures of Constructible Functions in Valuations
    Alesker, Semyon
    [J]. GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS, 2017, 2169 : 1 - 14
  • [2] The theory of the topological space
    Alexandroff, P
    Urysohn, P
    [J]. MATHEMATISCHE ANNALEN, 1924, 92 : 258 - 266
  • [3] Banach S., 1979, TRAVAUX LANALYSE FON, V2
  • [4] Banach S., 1979, TRAVAUX ANAL FONCTIO, V2
  • [5] Banach S, 1932, Theorie des operations lineaires
  • [6] ON A PROBLEM OF BELLENOT AND DUBINSKY
    BEHRENDS, E
    DIEROLF, S
    HARMAND, P
    [J]. MATHEMATISCHE ANNALEN, 1986, 275 (03) : 337 - 339
  • [7] BASIC SEQUENCES AND NORMING SUBSPACES IN NON-QUASI-REFLEXIVE BANACH SPACES
    DAVIS, WJ
    JOHNSON, WB
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1973, 14 (04) : 353 - 367
  • [8] de la Salle, 2021, ARXIV
  • [9] Convex functions on dual Orlicz spaces
    Delbaen, Freddy
    Owari, Keita
    [J]. POSITIVITY, 2019, 23 (05) : 1051 - 1064
  • [10] Dierolf S., 1987, FUNCT APPROX COMMENT, V17, P131