Quod erat demonstrandum?- Towards a typology of the concept of explanation for the design of explainable AI

被引:55
作者
Cabitza, Federico [1 ,2 ]
Campagner, Andrea [1 ]
Malgieri, Gianclaudio [3 ,4 ]
Natali, Chiara [1 ]
Schneeberger, David [5 ]
Stoeger, Karl [5 ]
Holzinger, Andreas [6 ]
机构
[1] Univ Milano Bicocca, DISCo, viale Sarca 336, I-20126 Milan, Italy
[2] IRCCS Orthoped Inst Galeazzi, via Galeazzi, 4, I-20161 Milan, Italy
[3] EDHEC Business Sch, Augmented Law Inst, 24 Ave Gustave Delory, CS 50411, F-59057 Roubaix 1, France
[4] Leiden Univ, eLaw, Rapenburg 70, NL-2311 Leiden, EZ, Netherlands
[5] Univ Vienna, Schottenbastei 10-16, A-1010 Vienna, Austria
[6] Univ Nat Resources & Life Sci Vienna, Peter Jordan Str 82, A-1190 Vienna, Austria
基金
奥地利科学基金会;
关键词
Explainable AI; XAI; Explanations; Taxonomy; Artificial intelligence; Machine learning; AUTOMATED DECISION-MAKING; BLACK-BOX; MACHINE; QUALITY;
D O I
10.1016/j.eswa.2022.118888
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a fundamental framework for defining different types of explanations of AI systems and the criteria for evaluating their quality. Starting from a structural view of how explanations can be constructed, i.e., in terms of an explanandum (what needs to be explained), multiple explanantia (explanations, clues, or parts of information that explain), and a relationship linking explanandum and explanantia, we propose an explanandum-based typology and point to other possible typologies based on how explanantia are presented and how they relate to explanandia. We also highlight two broad and complementary perspectives for defining possible quality criteria for assessing explainability: epistemological and psychological (cognitive). These definition attempts aim to support the three main functions that we believe should attract the interest and further research of XAI scholars: clear inventories, clear verification criteria, and clear validation methods.
引用
收藏
页数:16
相关论文
共 119 条
[1]   Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) [J].
Adadi, Amina ;
Berrada, Mohammed .
IEEE ACCESS, 2018, 6 :52138-52160
[2]  
Adhikari Ajaya, 2019, IEEE INT FUZZY SYST
[3]   Permutation importance: a corrected feature importance measure [J].
Altmann, Andre ;
Tolosi, Laura ;
Sander, Oliver ;
Lengauer, Thomas .
BIOINFORMATICS, 2010, 26 (10) :1340-1347
[4]   Explainable artificial intelligence: an analytical review [J].
Angelov, Plamen P. ;
Soares, Eduardo A. ;
Jiang, Richard ;
Arnold, Nicholas I. ;
Atkinson, Peter M. .
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 11 (05)
[5]   Fair and Adequate Explanations [J].
Asher, Nicholas ;
Paul, Soumya ;
Russell, Chris .
MACHINE LEARNING AND KNOWLEDGE EXTRACTION (CD-MAKE 2021), 2021, 12844 :79-97
[6]  
Baehrens D, 2010, J MACH LEARN RES, V11, P1803
[7]   Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI [J].
Barredo Arrieta, Alejandro ;
Diaz-Rodriguez, Natalia ;
Del Ser, Javier ;
Bennetot, Adrien ;
Tabik, Siham ;
Barbado, Alberto ;
Garcia, Salvador ;
Gil-Lopez, Sergio ;
Molina, Daniel ;
Benjamins, Richard ;
Chatila, Raja ;
Herrera, Francisco .
INFORMATION FUSION, 2020, 58 :82-115
[8]   PROTOTYPE SELECTION FOR INTERPRETABLE CLASSIFICATION [J].
Bien, Jacob ;
Tibshirani, Robert .
ANNALS OF APPLIED STATISTICS, 2011, 5 (04) :2403-2424
[9]   Machine Learning Explainability Through Comprehensible Decision Trees [J].
Blanco-Justicia, Alberto ;
Domingo-Ferrer, Josep .
MACHINE LEARNING AND KNOWLEDGE EXTRACTION, CD-MAKE 2019, 2019, 11713 :15-26
[10]  
Bordt S., 2022, arXiv, DOI DOI 10.48550/ARXIV.2201.10295