A comprehensive review of machine learning approaches for dyslexia diagnosis

被引:13
作者
Ahire, Nitin [1 ,2 ]
Awale, R. N. [1 ]
Patnaik, Suprava [3 ]
Wagh, Abhay [4 ]
机构
[1] VJTI, Mumbai, Maharashtra, India
[2] Xavier Inst Engn, Mumbai, Maharashtra, India
[3] KIIT, Sch Elect, Bhubaneswar, India
[4] DTE, Mumbai, Maharashtra, India
关键词
EEG; Dyslexia; Brain wave; Machine learning; SVM; KNN; EEG SIGNAL; DEVELOPMENTAL DYSLEXIA; FEATURE-EXTRACTION; CHILDREN; CLASSIFICATION; RECOGNITION; ACTIVATION; GENES;
D O I
10.1007/s11042-022-13939-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Electroencephalography (EEG) is the commonly employed electro-biological imaging technique for diagnosing brain functioning. The EEG signals are used to determine head injury, ascertain brain cell functioning, and monitor brain development. EEG can add multiple dimensions towards the identification of learning disability being an abnormality of the brain. Early and accurate detection of brain diseases can significantly reduce the mortality rate with a lesser treatment cost. The machine learning techniques can examine, classify, and process EEG signals to accurately understand brain activities and disorders. This paper is a comprehensive review of the application of machine learning techniques in the classification of EEG signals of dyslexia and analysis of an improved framework to extemporize the classifier's performance and accuracy in discriminating between dyslexics and controls. The presence of noises and artefacts often reduces the performance of classifiers and hampers results. This study reviews input pre-processing, feature selection, feature extraction techniques and machine learning algorithms for the early detection of disorder. The SVM was found to be outperforming other machine learning techniques for the classification of EEG signals.
引用
收藏
页码:13557 / 13577
页数:21
相关论文
共 104 条
[1]   Comparative Analysis of various Brain Imaging Techniques [J].
Agnihotri, Prashant ;
Fazel-Rezai, Reza ;
Kaabouch, Naima .
2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, :3029-3032
[2]  
Al-Barhamtoshy Hassanin M., 2017, 2017 INT C INFORMATI
[3]  
Al-Fahoum Amjed S, 2014, ISRN Neurosci, V2014, P730218, DOI [10.1155/2014/794943, 10.1155/2014/730218]
[4]   Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques [J].
Amin, Hafeez Ullah ;
Malik, Aamir Saeed ;
Ahmad, Rana Fayyaz ;
Badruddin, Nasreen ;
Kamel, Nidal ;
Hussain, Muhammad ;
Chooi, Weng-Tink .
AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE, 2015, 38 (01) :139-149
[5]   Detecting Complexity Abnormalities in Dyslexia Measuring Approximate Entropy of Electroencephalographic Signals [J].
Andreadis, Ioannis I. ;
Giannakakis, Giorgos A. ;
Papageorgiou, Charalabos ;
Nikita, Konstantina S. .
2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, :6292-+
[6]  
[Anonymous], 2013, INT J SCI ENG TECHNO
[7]   A Game Player Expertise Level Classification System Using Electroencephalography (EEG) [J].
Anwar, Syed Muhammad ;
Saeed, Sanay Muhammad Umar ;
Majid, Muhammad ;
Usman, Saeeda ;
Mehmood, Chaudhry Arshad ;
Liu, Wei .
APPLIED SCIENCES-BASEL, 2018, 8 (01)
[8]  
Arns Martijn, 2007, Journal of Integrative Neuroscience, V6, P175, DOI 10.1142/S0219635207001404
[9]  
Asvestopoulou, 2019, ARXIV
[10]   Genetic analysis of dyslexia candidate genes in the European cross-linguistic NeuroDys cohort [J].
Becker, Jessica ;
Czamara, Darina ;
Scerri, Tom S. ;
Ramus, Franck ;
Csepe, Valeria ;
Talcott, Joel B. ;
Stein, John ;
Morris, Andrew ;
Ludwig, Kerstin U. ;
Hoffmann, Per ;
Honbolygo, Ferenc ;
Toth, Denes ;
Fauchereau, Fabien ;
Bogliotti, Caroline ;
Iannuzzi, Stephanie ;
Chaix, Yves ;
Valdois, Sylviane ;
Billard, Catherine ;
George, Florence ;
Soares-Boucaud, Isabelle ;
Gerard, Christophe-Loic ;
van der Mark, Sanne ;
Schulz, Enrico ;
Vaessen, Anniek ;
Maurer, Urs ;
Lohvansuu, Kaisa ;
Lyytinen, Heikki ;
Zucchelli, Marco ;
Brandeis, Daniel ;
Blomertw, Leo ;
Leppanen, Paavo H. T. ;
Bruder, Jennifer ;
Monaco, Anthony P. ;
Mueller-Myhsok, Bertram ;
Kere, Juha ;
Landerl, Karin ;
Noethen, Markus M. ;
Schulte-Koerne, Gerd ;
Paracchini, Silvia ;
Peyrard-Janvid, Myriam ;
Schumacher, Johannes .
EUROPEAN JOURNAL OF HUMAN GENETICS, 2014, 22 (05) :675-680