Error estimates for the numerical approximation of optimal control problems with nonsmooth pointwise-integral control constraints

被引:3
|
作者
Casas, Eduardo [1 ]
Kunisch, Karl [2 ,3 ]
Mateos, Mariano [4 ]
机构
[1] Univ Cantabria, Dept Appl Math & Comp Sci, Avda Castros S-N, Santander 39005, Spain
[2] Karl Franzens Univ Graz, Inst Math & Sci Comp, Heinrichstr 36, A-8010 Graz, Austria
[3] Austrian Acad Sci, Johann Radon Inst, Linz, Austria
[4] Univ Oviedo, Dept Math, Gijon 33203, Spain
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
optimal control; semilinear partial differential equations; discontinuous Galerkin approximations; error estimates; FINITE-ELEMENT APPROXIMATION;
D O I
10.1093/imanum/drac027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The numerical approximation of an optimal control problem governed by a semilinear parabolic equation and constrained by a bound on the spatial L-1-norm of the control at every instant of time is studied. Spatial discretizations of the controls by piecewise constant and continuous piecewise linear functions are investigated. Under finite element approximations, the sparsity properties of the continuous solutions are preserved in a natural way using piecewise constant approximations of the control, but suitable numerical integration of the objective functional and of the constraint must be used to keep the sparsity pattern when using spatially continuous piecewise linear approximations. We also obtain error estimates and finally present some numerical examples.
引用
收藏
页码:1485 / 1518
页数:34
相关论文
共 50 条
  • [31] New regularity results and finite element error estimates for a class of parabolic optimal control problems with pointwise state constraints
    Christof, Constantin
    Vexler, Boris
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27 (27)
  • [32] Error Estimates for the Numerical Approximation of Boundary Semilinear Elliptic Control Problems
    Eduardo Casas
    Mariano Mateos
    Fredi TrÖltzsch
    Computational Optimization and Applications, 2005, 31 : 193 - 219
  • [33] Error estimates for the numerical approximation of boundary semilinear elliptic control problems
    Casas, E
    Mateos, M
    Tröltzsch, F
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2005, 31 (02) : 193 - 219
  • [34] Exact penalization of pointwise constraints for optimal control problems
    Casas, Eduardo
    CONTROL AND CYBERNETICS, 2009, 38 (04): : 1131 - 1150
  • [35] Error estimates for the approximation of multibang control problems
    Christian Clason
    Thi Bich Tram Do
    Frank Pörner
    Computational Optimization and Applications, 2018, 71 : 857 - 878
  • [36] Error estimates for the approximation of multibang control problems
    Clason, Christian
    Thi Bich Tram Do
    Poerner, Frank
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 71 (03) : 857 - 878
  • [37] Pointwise-in-time error estimates for an optimal control problem with subdiffusion constraint
    Jin, Bangti
    Li, Buyang
    Zhou, Zhi
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (01) : 377 - 404
  • [38] ERROR ESTIMATES FOR A POINTWISE TRACKING OPTIMAL CONTROL PROBLEM OF A SEMILINEAR ELLIPTIC EQUATION
    Allendes, Alejandro
    Fuica, Francisco
    Otarola, Enrique
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2022, 60 (03) : 1763 - 1790
  • [39] ERROR ESTIMATES FOR THE NUMERICAL APPROXIMATION OF A DISTRIBUTED OPTIMAL CONTROL PROBLEM GOVERNED BY THE VON KARMAN EQUATIONS
    Mallik, Gouranga
    Nataraj, Neela
    Raymond, Jean-Pierre
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (03): : 1137 - 1172
  • [40] Error Estimates for Approximate Solutions to Seminlinear Elliptic Optimal Control Problems with Nonlinear and Mixed Constraints
    Kien, B. T.
    Tuan, N. Q.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2022, 43 (14) : 1672 - 1706