Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments

被引:34
作者
Grassmann, Greta [1 ,2 ]
Miotto, Mattia [2 ]
Desantis, Fausta [2 ,3 ]
Di Rienzo, Lorenzo [2 ]
Tartaglia, Gian Gaetano [2 ,4 ,5 ]
Pastore, Annalisa [6 ]
Ruocco, Giancarlo [2 ,7 ]
Monti, Michele [8 ]
Milanetti, Edoardo [2 ,7 ]
机构
[1] Sapienza Univ Rome, Dept Biochem Sci Alessandro Rossi Fanelli, I-00185 Rome, Italy
[2] Ist Italiano Tecnol, Ctr Life Nano & Neuro Sci, I-00161 Rome, Italy
[3] Open Univ, Ist Italiano Tecnol, Affiliated Res Ctr, I-16163 Genoa, Italy
[4] Ist Italiano Tecnol, Dept Neurosci & Brain Technol, I-16163 Genoa, Italy
[5] Ctr Human Technol, I-16152 Genoa, Italy
[6] European Synchrotron Radiat Facil, Expt Div, F-38043 Grenoble, France
[7] Sapienza Univ, Dept Phys, I-00185 Rome, Italy
[8] Ist Italiano Tecnol, Dept Neurosci & Brain Technol, RNA Syst Biol Lab, I-16163 Genoa, Italy
基金
欧盟地平线“2020”;
关键词
INTRINSICALLY DISORDERED PROTEINS; MOLECULAR-DYNAMICS SIMULATIONS; SEQUENCE-BASED PREDICTION; NATIVE-STATE STABILITY; SCALED PARTICLE THEORY; COARSE-GRAINED MODEL; FORCE-FIELD; FREE-ENERGY; BINDING-AFFINITY; REPLICA-EXCHANGE;
D O I
10.1021/acs.chemrev.3c00550
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Investigating protein-protein interactions is crucial for understanding cellular biological processes because proteins often function within molecular complexes rather than in isolation. While experimental and computational methods have provided valuable insights into these interactions, they often overlook a critical factor: the crowded cellular environment. This environment significantly impacts protein behavior, including structural stability, diffusion, and ultimately the nature of binding. In this review, we discuss theoretical and computational approaches that allow the modeling of biological systems to guide and complement experiments and can thus significantly advance the investigation, and possibly the predictions, of protein-protein interactions in the crowded environment of cell cytoplasm. We explore topics such as statistical mechanics for lattice simulations, hydrodynamic interactions, diffusion processes in high-viscosity environments, and several methods based on molecular dynamics simulations. By synergistically leveraging methods from biophysics and computational biology, we review the state of the art of computational methods to study the impact of molecular crowding on protein-protein interactions and discuss its potential revolutionizing effects on the characterization of the human interactome.
引用
收藏
页码:3932 / 3977
页数:46
相关论文
共 491 条
[1]   ISLAND: in-silico proteins binding affinity prediction using sequence information [J].
Abbasi, Wajid Arshad ;
Yaseen, Adiba ;
Ul Hassan, Fahad ;
Andleeb, Saiqa ;
Minhas, Fayyaz Ul Amir Afsar .
BIODATA MINING, 2020, 13 (01)
[2]   Assessment of transferable forcefields for protein simulations attests improved description of disordered states and secondary structure propensities, and hints at multi-protein systems as the next challenge for optimization [J].
Abriata, Luciano A. ;
Dal Peraro, Matteo .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 :2626-2636
[3]   Assessing the potential of atomistic molecular dynamics simulations to probe reversible protein-protein recognition and binding [J].
Abriata, Luciano A. ;
Dal Peraro, Matteo .
SCIENTIFIC REPORTS, 2015, 5
[4]   CFinder:: locating cliques and overlapping modules in biological networks [J].
Adamcsek, B ;
Palla, G ;
Farkas, IJ ;
Derényi, I ;
Vicsek, T .
BIOINFORMATICS, 2006, 22 (08) :1021-1023
[5]   15N NMR spin relaxation dispersion study of the molecular crowding effects on protein folding under native conditions [J].
Ai, XJ ;
Zhou, Z ;
Bai, YW ;
Choy, WY .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (12) :3916-3917
[6]   The Gene Ontology knowledgebase in 2023 [J].
Aleksander, Suzi A. ;
Balhoff, James ;
Carbon, Seth ;
Cherry, J. Michael ;
Drabkin, Harold J. ;
Ebert, Dustin ;
Feuermann, Marc ;
Gaudet, Pascale ;
Harris, Nomi L. ;
Hill, David P. ;
Lee, Raymond ;
Mi, Huaiyu ;
Moxon, Sierra ;
Mungall, Christopher J. ;
Muruganugan, Anushya ;
Mushayahama, Tremayne ;
Sternberg, Paul W. ;
Thomas, Paul D. ;
Van Auken, Kimberly ;
Ramsey, Jolene ;
Siegele, Deborah A. ;
Chisholm, Rex L. ;
Fey, Petra ;
Aspromonte, Maria Cristina ;
Nugnes, Maria Victoria ;
Quaglia, Federica ;
Tosatto, Silvio ;
Giglio, Michelle ;
Nadendla, Suvarna ;
Antonazzo, Giulia ;
Attrill, Helen ;
dos Santos, Gil ;
Marygold, Steven ;
Strelets, Victor ;
Tabone, Christopher J. ;
Thurmond, Jim ;
Zhou, Pinglei ;
Ahmed, Saadullah H. ;
Asanitthong, Praoparn ;
Luna Buitrago, Diana ;
Erdol, Meltem N. ;
Gage, Matthew C. ;
Ali Kadhum, Mohamed ;
Li, Kan Yan Chloe ;
Long, Miao ;
Michalak, Aleksandra ;
Pesala, Angeline ;
Pritazahra, Armalya ;
Saverimuttu, Shirin C. C. ;
Su, Renzhi .
GENETICS, 2023, 224 (01)
[7]   The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design [J].
Alford, Rebecca F. ;
Leaver-Fay, Andrew ;
Jeliazkov, Jeliazko R. ;
O'Meara, Matthew J. ;
DiMaio, Frank P. ;
Park, Hahnbeom ;
Shapovalov, Maxim V. ;
Renfrew, P. Douglas ;
Mulligan, Vikram K. ;
Kappel, Kalli ;
Labonte, Jason W. ;
Pacella, Michael S. ;
Bonneau, Richard ;
Bradley, Philip ;
Dunbrack, Roland L., Jr. ;
Das, Rhiju ;
Baker, David ;
Kuhlman, Brian ;
Kortemme, Tanja ;
Gray, Jeffrey J. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (06) :3031-3048
[8]   AlphaFold at CASP13 [J].
AlQuraishi, Mohammed .
BIOINFORMATICS, 2019, 35 (22) :4862-4865
[9]   Sequence-based Prediction of Protein-Protein Interactions Using Gray Wolf Optimizer-Based Relevance Vector Machine [J].
An, Ji-Yong ;
You, Zhu-Hong ;
Zhou, Yong ;
Wang, Da-Fu .
EVOLUTIONARY BIOINFORMATICS, 2019, 15
[10]   Thermodynamics of Macromolecular Association in Heterogeneous Crowding Environments: Theoretical and Simulation Studies with a Simplified Model [J].
Ando, Tadashi ;
Yu, Isseki ;
Feig, Michael ;
Sugita, Yuji .
JOURNAL OF PHYSICAL CHEMISTRY B, 2016, 120 (46) :11856-11865